批量归一化(Batch Normalization)原理与PyTorch实现

批量归一化(Batch Normalization)是加速深度神经网络训练的常用技术。本文通过Fashion-MNIST数据集,演示如何从零实现批量归一化,并对比PyTorch内置API的简洁实现方式。


1. 从零实现批量归一化

1.1 批量归一化函数实现

import torch
from torch import nn
from d2l import torch as d2ldef batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):if not torch.is_grad_enabled():# 预测模式下使用移动平均X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)else:assert len(X.shape) in (2, 4)if len(X.shape) == 2:# 全连接层:特征维计算均值和方差mean = X.mean(dim=0)var = ((X - mean) ** 2).mean(dim=0)else:# 卷积层:通道维计算均值和方差mean = X.mean(dim=(0, 2, 3), keepdim=True)var = ((X - mean) ** 2).mean(dim=(0, 2, 3), keepdim=True)# 训练模式下更新移动平均X_hat = (X - mean) / torch.sqrt(var + eps)moving_mean = momentum * moving_mean + (1.0 - momentum) * meanmoving_var = momentum * moving_var + (1.0 - momentum) * varY = gamma * X_hat + beta  # 缩放和平移return Y, moving_mean.data, moving_var.data

1.2 批量归一化层类

class BatchNorm(nn.Module):def __init__(self, num_features, num_dims):super().__init__()if num_dims == 2:shape = (1, num_features)else:shape = (1, num_features, 1, 1)self.gamma = nn.Parameter(torch.ones(shape))self.beta = nn.Parameter(torch.zeros(shape))self.moving_mean = torch.zeros(shape)self.moving_var = torch.ones(shape)def forward(self, X):if self.moving_mean.device != X.device:self.moving_mean = self.moving_mean.to(X.device)self.moving_var = self.moving_var.to(X.device)Y, self.moving_mean, self.moving_var = batch_norm(X, self.gamma, self.beta, self.moving_mean,self.moving_var, eps=1e-5, momentum=0.9)return Y

1.3 构建含批量归一化的网络

net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5), BatchNorm(6, num_dims=4), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5), BatchNorm(16, num_dims=4), nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2), nn.Flatten(),nn.Linear(16*4*4, 120), BatchNorm(120, num_dims=2), nn.Sigmoid(),nn.Linear(120, 84), BatchNorm(84, num_dims=2), nn.Sigmoid(),nn.Linear(84, 10))

1.4 训练与结果

lr, num_epochs, batch_size = 1.0, 10, 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

输出结果

loss 0.277, train acc 0.898, test acc 0.835
28009.9 examples/sec on cuda:0

训练曲线

2. 使用PyTorch内置批量归一化

2.1 简洁实现网络结构

net = nn.Sequential(nn.Conv2d(1, 6, kernel_size=5),nn.BatchNorm2d(6),nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Conv2d(6, 16, kernel_size=5),nn.BatchNorm2d(16),nn.Sigmoid(),nn.AvgPool2d(kernel_size=2, stride=2),nn.Flatten(),nn.Linear(256, 120),nn.BatchNorm1d(120),nn.Sigmoid(),nn.Linear(120, 84),nn.BatchNorm1d(84),nn.Sigmoid(),nn.Linear(84, 10))

 2.2 训练与结果对比

d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())

输出结果

loss 0.264, train acc 0.902, test acc 0.849
44608.4 examples/sec on cuda:0

训练曲线

3. 关键参数分析

查看第一个批量归一化层的缩放(gamma)和偏移(beta)参数:

print(net[1].gamma.reshape((-1,)), 
print(net[1].beta.reshape((-1,)))

 输出

(tensor([0.3957, 2.2124, 2.8581, 2.1908, 3.6253, 3.5650], device='cuda:0', grad_fn=<ReshapeAliasBackward0>),
tensor([ 0.1832, -2.5689, -3.2450, -0.7221, 1.1290, 2.2353], device='cuda:0', grad_fn=<ReshapeAliasBackward0>))

4. 结论

  1. 性能对比:PyTorch内置实现相比手动实现,测试准确率从83.5%提升到84.9%,且训练速度更快(44k样本/秒 vs 28k样本/秒)

  2. 实现差异:内置API自动处理设备迁移和参数初始化,代码更简洁

  3. 注意事项:全连接层使用nn.BatchNorm1d,卷积层使用nn.BatchNorm2d

完整代码已通过测试,可直接复现实验结果。批量归一化能有效加速收敛并提升模型泛化能力,是深度网络设计的必备组件。


提示:运行代码需要安装d2l库(pip install d2l)并支持GPU环境。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/77002.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

feedback

这个文件 lib/pages/feedback/index.dart 是一个反馈/留言表单页面的实现&#xff0c;主要功能是&#xff1a; 表单收集功能&#xff1a; 真实姓名&#xff08;必填&#xff09;联系电话&#xff08;必填&#xff0c;需要验证手机号格式&#xff09;电子邮箱&#xff08;选填&a…

数据仓库标准库模型架构相关概念浅讲

数据仓库与模型体系及相关概念 数据仓库与数据库的区别可参考&#xff1a;数据库与数据仓库的区别及关系_数据仓库和数据库-CSDN博客 总之&#xff0c;数据库是为捕获数据而设计&#xff0c;数据仓库是为分析数据而设计 数据仓库集成工具 在一些大厂中&#xff0c;其会有自…

适用于 HAL 的 AIDL

目录 设计初衷 注意 编写AIDLHAL接口 查找AIDLHAL接口 扩展接口 将现有HAL从HIDL转换为AIDL AIDL与HIDL之间的主要差异 针对HAL的供应商测试套件(VTS)测试 Android 11 中引入了在 Android 中使用 AIDL 实现 HAL 的功能, 从而可以在不使用 HIDL 的情况下实现 Android 的部分…

leetcode0547. 省份数量-medium

1 题目&#xff1a;省份数量 官方标定难度&#xff1a;中 有 n 个城市&#xff0c;其中一些彼此相连&#xff0c;另一些没有相连。如果城市 a 与城市 b 直接相连&#xff0c;且城市 b 与城市 c 直接相连&#xff0c;那么城市 a 与城市 c 间接相连。 省份 是一组直接或间接相…

【专题刷题】双指针(一)

&#x1f4dd;前言说明&#xff1a; 本专栏主要记录本人的基础算法学习以及LeetCode刷题记录&#xff0c;按专题划分每题主要记录&#xff1a;1&#xff0c;本人解法 本人屎山代码&#xff1b;2&#xff0c;优质解法 优质代码&#xff1b;3&#xff0c;精益求精&#xff0c;…

WebSocket 技术详解

引言 在现代Web应用中&#xff0c;实时通信已经成为不可或缺的一部分。想象一下聊天应用、在线游戏、股票交易平台或协作工具&#xff0c;这些应用都需要服务器能够即时将更新推送给客户端&#xff0c;而不仅仅是等待客户端请求。WebSocket技术应运而生&#xff0c;它提供了一…

【redis】初识redis

初识redis Redis 是一种基于键值对&#xff08;key-value&#xff09; 的 NoSQL 的数据库&#xff0c;它与很多键值数据库不同&#xff0c; Redis 中的值可以是 string&#xff08;字符串&#xff09; 、hash&#xff08;哈希&#xff09;、list&#xff08;链表&#xff09;、…

UE5 制作方块边缘渐变边框效果

该效果基于之前做的&#xff08;https://blog.csdn.net/grayrail/article/details/144546427&#xff09;进行修改得到&#xff0c;思路也很简单&#xff1a; 1.打开实时预览 1.为了制作时每个细节调整方便&#xff0c;勾选Live Update中的三个选项&#xff0c;开启实时预览。…

基于springboot的“嗨玩旅游网站”的设计与实现(源码+数据库+文档+PPT)

基于springboot的“嗨玩旅游网站”的设计与实现&#xff08;源码数据库文档PPT) 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;springboot 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 系统展示 系统功能结构图 局部E-R图 系统首页界面 系统注册…

grafana/loki 部署搜集 k8s 集群日志

grafana/loki 和 grafana/loki-stack 的区别 ​Grafana 提供了多个 Helm Chart 用于在 Kubernetes 集群中部署 Loki 及相关组件,其中主要包括 grafana/loki 和 grafana/loki-stack。​它们的主要区别如下:​ 1.grafana/loki Helm Chart: 专注于 Loki 部署: 该 Chart 专门…

Nacos-Controller 2.0:使用 Nacos 高效管理你的 K8s 配置

作者&#xff1a;濯光、翼严 Kubernetes 配置管理的局限 目前&#xff0c;在 Kubernetes 集群中&#xff0c;配置管理主要通过 ConfigMap 和 Secret 来实现。这两种资源允许用户将配置信息通过环境变量或者文件等方式&#xff0c;注入到 Pod 中。尽管 Kubernetes 提供了这些强…

python自动化浏览器标签页的切换

#获取全部标签页的句柄返回句柄的列表 handleswebdriver.window_handles#获取全部标签页的句柄返回句柄的列表 print(len(handles)) 切换标签页 handleswebdriver.window_handles webdriver.switch_to.window(handles[index])#切换到第几个标签页就写几 关闭标签页 关闭标…

微信小程序组件传参

微信小程序组件传参感觉和vue还是挺像的 父组件向子组件传参 在小程序中父组件子组件传参&#xff0c;主要使用properties属性。演示下&#xff1a; 创建组件文件夹component&#xff0c;创建组件demoComponent&#xff0c;记得创建的时候选择组件&#xff0c;不是page页面 …

【嵌入式硬件】LAN9253说明书(中文版)

目录 1.介绍 1.1总体介绍 1.2模式介绍 1.2.1微控制器模式: 1.2.2 扩展模式 1.2.3 数字IO模式 1.2.4 各模式图 2.引脚说明 2.1 引脚总览 2.2 引脚描述 2.2.1 LAN端口A引脚 2.2.2 LAN端口B引脚 2.2.3 LAN端口A和、B电源和公共引脚 2.2.4 SPI/SQI PINS 2.2.5 分布式时…

【C语言基础】双指针在qsort函数中的应用

在C语言中使用 qsort 对字符串数组&#xff08;如 char* 数组&#xff09;排序时&#xff0c;必须转换为双指针&#xff08;char**&#xff09;&#xff0c;这是由字符串数组的内存结构和 qsort 的工作原理决定的。以下是详细解释&#xff1a; 一、底层原理分析 1. 字符串数组…

批处理(Batch Processing)的详解、流程及框架/工具的详细对比

以下是批处理&#xff08;Batch Processing&#xff09;的详解、流程及框架/工具的详细对比&#xff1a; 一、批处理核心概念 定义&#xff1a; 批处理是离线处理大量数据或任务的自动化流程&#xff0c;特点是无人值守、高吞吐量、资源密集型&#xff0c;常用于数据清洗、报表…

基于FreeRTOS和LVGL的多功能低功耗智能手表(APP篇)

目录 一、简介 二、软件框架 2.1 MDK工程架构 2.2 CubeMX框架 2.3 板载驱动BSP 1、LCD驱动 2、各个I2C传感器驱动 3、硬件看门狗驱动 4、按键驱动 5、KT6328蓝牙驱动 2.4 管理函数 2.4.1 StrCalculate.c 计算器管理函数 2.4.2 硬件访问机制-HWDataAccess 2.4.3 …

【初阶数据结构】——算法复杂度

一、前言 1、数据结构是什么&#xff1f; 数据结构(Data Structure)是计算机存储、组织数据的⽅式&#xff0c;指相互之间存在⼀种或多种特定关系的数 据元素的集合。没有⼀种单⼀的数据结构对所有⽤途都有⽤&#xff0c;所以我们要学各式各样的数据结构&#xff0c; 如&…

记录 | Pycharm中如何调用Anaconda的虚拟环境

目录 前言一、步骤Step1 查看anaconda 环境名Step2 Python项目编译器更改 更新时间 前言 参考文章&#xff1a; 参考视频&#xff1a;如何在pycharm中使用Anaconda创建的python环境 自己的感想 这里使用的Pycharm 2024专业版的。我所使用的Pycharm专业版位置&#xff1a;【仅用…

linux如何用关键字搜索日志

在 Linux 系统中搜索日志是日常运维的重要工作&#xff0c;以下是几种常用的关键字搜索日志方法&#xff1a; 1. 基础 grep 搜索 bash 复制 # 基本搜索&#xff08;区分大小写&#xff09; grep "keyword" /var/log/syslog# 忽略大小写搜索 grep -i "error&…