19【动手学深度学习】卷积层

1. 从全连接到卷积

 

 2. 图像卷积

3. 图形卷积代码

互相关操作

import torch
from torch import nn
from d2l import torch as d2ldef corr2d(X, K):"""计算2维互相关运算"""h, w = K.shapeY = torch.zeros((X.shape[0]-h+1, X.shape[1]-w + 1))for i in range(Y.shape[0]):for j in range(Y.shape[1]):Y[i,j] = (X[i:i + h, j:j + w] * K).sum()return Y

 验证上述二维互相关运算的输出

X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
corr2d(X, K)

 实现二维卷积层

class Conv2D(nn.Module):def __init__(self, kernel_size):super().__init__()self.weight = nn.Parameter(torch.rand(kernel_size))self.bias = nn.Parameter(torch.zeros(1))def forward(self, x):return corr2d(x, self.weight) + self.bias

卷积层的一个简单应用: 检测图像中不同颜色的边缘

X = torch.ones((6, 8))
X[:, 2:6] = 0
X

K = torch.tensor([[1.0, -1.0]])

输出Y中的1代表从白色到黑色的边缘,-1代表从黑色到白色的边缘

Y = corr2d(X, K)
Y

 卷积核K只可以检测垂直边缘

corr2d(X.t(), K)   # X转置

 学习由X生成Y的卷积核(3e-2为学习率)

conv2d = nn.Conv2d(1,1, kernel_size=(1,2),bias=False)#  b,c,h,w
# 这个二维卷积层使用四维输入和输出格式(批量大小、通道、高度、宽度),
# 其中批量大小和通道数都为1
X = X.reshape((1, 1, 6, 8))
Y = Y.reshape((1, 1, 6, 7))for i in range(10):Y_hat = conv2d(X)l = (Y_hat - Y)**2conv2d.zero_grad()l.sum().backward()conv2d.weight.data[:] -= 3e-2 * conv2d.weight.gradif (i + 1) % 2 == 0:print(f'batch{i+1}, loss{l.sum():.3f}')

所学的卷积核的权重张量,与之前的权重(1, -1)很接近

conv2d.weight.data.reshape((1, 2))

小结

  • 二维卷积层的核心计算是二维互相关运算。最简单的形式是,对二维输入数据和卷积核执行互相关操作,然后添加一个偏置。
  • 我们可以设计一个卷积核来检测图像的边缘。
  • 我们可以从数据中学习卷积核的参数。
  • 学习卷积核时,无论用严格卷积运算或互相关运算,卷积层的输出不会受太大影响。
  • 当需要检测输入特征中更广区域时,我们可以构建一个更深的卷积网络。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/76618.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux xorg-server 解析(一)- 编译安装Debug版本的xorg-server

一:下载代码 1. 配置源,以Ubuntu24.04 为例( /etc/apt/sources.list.d/ubuntu.sources): 2. apt source xserver-xorg-core 二:编译代码 1. sudo apt build-dep ./ 2. DEB_BUILD_OPTIONS="nostrip" DEB_CFLAGS_SET="-g -O0" dpkg-buildpac…

大模型SFT用chat版还是base版 SFT后灾难性遗忘怎么办

大模型SFT用chat版还是base版 进行 SFT 时,基座模型选用 Chat 还是 Base 模型? 选 Base 还是 Chat 模型,首先先熟悉 Base 和 Chat 是两种不同的大模型,它们在训练数据、应用场景和模型特性上有所区别。 在训练数据方面&#xf…

【图像生成之21】融合了Transformer与Diffusion,Meta新作Transfusion实现图像与语言大一统

论文:Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model 地址:https://arxiv.org/abs/2408.11039 类型:理解与生成 Transfusion模型‌是一种将Transformer和Diffusion模型融合的多模态模型,旨…

动态多目标进化算法:基于知识转移和维护功能的动态多目标进化算法(KTM-DMOEA)求解CEC2018(DF1-DF14)

一、KTM-DMOEA介绍 在实际工程和现实生活中,许多优化问题具有动态性和多目标性,即目标函数会随着环境的变化而改变,并且存在多个相互冲突的目标。传统的多目标进化算法在处理这类动态问题时面临着一些挑战,如收敛速度慢、难以跟踪…

部署NFS版StorageClass(存储类)

部署NFS版StorageClass存储类 NFS版PV动态供给StorageClass(存储类)基于NFS实现动态供应下载NFS存储类资源清单部署NFS服务器为StorageClass(存储类)创建所需的RBAC部署nfs-client-provisioner的deployment创建StorageClass使用存储类创建PVC NFS版PV动态供给StorageClass(存储…

Vue使用el-table给每一行数据上面增加一行自定义合并行

// template <template><el-table:data"flattenedData":span-method"objectSpanMethod"borderclass"custom-header-table"style"width: 100%"ref"myTable":height"60vh"><!-- 订单详情列 -->&l…

vue项目使用html2canvas和jspdf将页面导出成PDF文件

一、需求&#xff1a; 页面上某一部分内容需要生成pdf并下载 二、技术方案&#xff1a; 使用html2canvas和jsPDF插件 三、js代码 // 页面导出为pdf格式 import html2Canvas from "html2canvas"; import jsPDF from "jspdf"; import { uploadImg } f…

大模型LLM表格报表分析:markitdown文件转markdown,大模型markdown统计分析

整体流程&#xff1a;用markitdown工具文件转markdown&#xff0c;然后大模型markdown统计分析 markitdown https://github.com/microsoft/markitdown 在线体验&#xff1a;https://huggingface.co/spaces/AlirezaF138/Markitdown 安装&#xff1a; pip install markitdown…

Linux 第二讲 --- 基础指令(二)

前言 这是基础指令的第二部分&#xff0c;但是该部分的讲解会大量使用到基础指令&#xff08;一&#xff09;的内容&#xff0c;为了大家的观感&#xff0c;如果对Linux的一些基本指令不了解的话&#xff0c;可以先看基础指令&#xff08;一&#xff09;&#xff0c;同样的本文…

python格式化字符串漏洞

什么是python格式化字符串漏洞 python中&#xff0c;存在几种格式化字符串的方式&#xff0c;然而当我们使用的方式不正确的时候&#xff0c;即格式化的字符串能够被我们控制时&#xff0c;就会导致一些严重的问题&#xff0c;比如获取敏感信息 python常见的格式化字符串 百…

LLaMA-Factory双卡4090微调DeepSeek-R1-Distill-Qwen-14B医学领域

unsloth单卡4090微调DeepSeek-R1-Distill-Qwen-14B医学领域后&#xff0c;跑通一下多卡微调。 1&#xff0c;准备2卡RTX 4090 2&#xff0c;准备数据集 医学领域 pip install -U huggingface_hub export HF_ENDPOINThttps://hf-mirror.com huggingface-cli download --resum…

React Hooks: useRef,useCallback,useMemo用法详解

1. useRef&#xff08;保存引用值&#xff09; useRef 通常用于保存“不会参与 UI 渲染&#xff0c;但生命周期要长”的对象引用&#xff0c;比如获取 DOM、保存定时器 ID、WebSocket等。 新建useRef.js组件&#xff0c;写入代码&#xff1a; import React, { useRef, useSt…

Spring AI 结构化输出详解

一、Spring AI 结构化输出的定义与核心概念 Spring AI 提供了一种强大的功能&#xff0c;允许开发者将大型语言模型&#xff08;LLM&#xff09;的输出从字符串转换为结构化格式&#xff0c;如 JSON、XML 或 Java 对象。这种结构化输出能力对于依赖可靠解析输出值的下游应用程…

THM Billing

1. 信息收集 (1) Nmap 扫描 bashnmap -T4 -sC -sV -p- 10.10.189.216 输出关键信息&#xff1a; PORT STATE SERVICE VERSION22/tcp open ssh OpenSSH 8.4p1 Debian 5deb11u380/tcp open http Apache 2.4.56 (Debian) # MagnusBilling 应用3306/tcp open …

布局决定终局:基于开源AI大模型、AI智能名片与S2B2C商城小程序的战略反推思维

摘要&#xff1a;在商业竞争日益激烈的当下&#xff0c;布局与终局预判成为企业成功的关键要素。本文探讨了布局与终局预判的智慧性&#xff0c;强调其虽无法做到百分之百准确&#xff0c;但能显著提升思考能力。终局思维作为重要战略工具&#xff0c;并非一步到位的战略部署&a…

贪心算法 day08(加油站+单调递增的数字+坏了的计算机)

目录 1.加油站 2.单调递增的数字 3.坏了的计算器 1.加油站 链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a; gas[index] - cost[index]&#xff0c;ret 表示的是在i位置开始循环时剩余的油量 a到达的最大路径假设是f那么我们可以得出 a b …

【技术派部署篇】云服务器部署技术派

1 环境搭建 1.1 JDK安装 # ubuntu sudo apt update # 更新apt apt install openjdk-8-jdk # 安装JDK安装完毕之后&#xff0c;执行 java -version 命令进行验证&#xff1a; 1.2 Maven安装 cd ~ mkdir soft cd soft wget https://dlcdn.apache.org/maven/maven-3/3.8.8/bina…

Linux:35.其他IPC和IPC原理+信号量入门

通过命名管道队共享内存的数据发送进行保护的bug&#xff1a; 命名管道挂掉后&#xff0c;进程也挂掉了。 6.systemV消息队列 原理:进程间IPC:原理->看到同一份资源->维护成为一个队列。 过程&#xff1a; 进程A,进程B进行通信。 让操作系统提供一个队列结构&#xff0c;…

【数据结构】红黑树超详解 ---一篇通关红黑树原理(含源码解析+动态构建红黑树)

一.什么是红黑树 红黑树是一种自平衡的二叉查找树&#xff0c;是计算机科学中用到的一种数据结构。1972年出现&#xff0c;最初被称为平衡二叉B树。1978年更名为“红黑树”。是一种特殊的二叉查找树&#xff0c;红黑树的每一个节点上都有存储表示节点的颜色。每一个节点可以是…

2024年第十五届蓝桥杯CC++大学A组--成绩统计

2024年第十五届蓝桥杯C&C大学A组--成绩统计 题目&#xff1a; 动态规划&#xff0c; 对于该题&#xff0c;考虑动态规划解法&#xff0c;先取前k个人的成绩计算其方差&#xff0c;并将成绩记录在数组中&#xff0c;记录当前均值&#xff0c;设小蓝已检查前i-1个人的成绩&…