# 问题一:随机森林回归
from sklearn.ensemble import RandomForestRegressor
model_rf = RandomForestRegressor()
model_rf.fit(X_train, y_train)
# 问题二:LSTM时间序列预测
from tensorflow.keras.models import Sequential
model_lstm = Sequential()
model_lstm.add(LSTM(50, input_shape=(window_size, n_features)))
model_lstm.add(Dense(60 * 2)) # 预测60步,每步两个浓度
# 问题三:时间点预测
def predict_event_time(predictions, k1, k2):
for i, (so2, h2s) in enumerate(predictions):
if so2 > k1 or h2s > k2:
return i + 10 # t+10为起始点
return None
2025年第十八届“认证杯”数学中国数学建模网络挑战赛B题完整word论文+代码+结果https://download.csdn.net/download/qq_52590045/905927492025年第十八届“认证杯”数学中国数学建模网络挑战赛C题完整word论文+代码+结果
https://download.csdn.net/download/qq_52590045/90592761
↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓