山西营销型网站建设/电话号码宣传广告

山西营销型网站建设,电话号码宣传广告,网站域名费会计分录怎么做,漳州本地企业网站建设服务前言 本文隶属于专栏《机器学习的一百个概念》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢! 本专栏目录结构和参考文献请见[《机器学习的一百个概念》 ima 知识库 知识库广场搜索&…

前言

本文隶属于专栏《机器学习的一百个概念》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!

本专栏目录结构和参考文献请见[《机器学习的一百个概念》


ima 知识库

知识库广场搜索:

知识库创建人
机器学习@Shockang
机器学习数学基础@Shockang
深度学习@Shockang

正文

在这里插入图片描述

基础概念与原理 🔍

1.1 下采样的定义

下采样(Downsampling)是机器学习中一个多义性概念,根据应用场景可分为两大类:

  1. 数据层面的下采样:在类别不平衡问题中,通过减少多数类样本数量来平衡数据分布的技术
  2. 特征层面的下采样:在深度学习中,特别是卷积神经网络(CNN)中用于降低数据维度或分辨率的操作

1.2 下采样的工作流程

在这里插入图片描述

1.3 理论基础

下采样的理论基础主要涉及以下几个方面:

  1. 统计学基础

    • 样本代表性
    • 随机性与均匀性
    • 概率分布保持
  2. 信息论基础

    • 信息熵
    • 数据压缩
    • 信息损失评估
  3. 采样理论

    • Nyquist采样定理
    • 香农采样定理
    • 混叠效应

应用场景与实现方法 💡

2.1 类别不平衡问题中的下采样

2.1.1 基本方法

在这里插入图片描述

  1. 随机下采样

    • 优点:实现简单,计算效率高
    • 缺点:可能丢失重要信息
    • 适用场景:数据量大,多数类样本具有较高冗余度
  2. 启发式下采样

    • NearMiss算法
    • Tomek Links
    • 编辑最近邻(ENN)
    • One-Sided Selection(OSS)
  3. 集成下采样

    • EasyEnsemble
    • BalanceCascade
    • UnderBagging

2.2 深度学习中的下采样

2.2.1 池化操作
  1. 最大池化(Max Pooling)
import torch.nn as nn# 定义2x2的最大池化层
max_pool = nn.MaxPool2d(kernel_size=2, stride=2)
  1. 平均池化(Average Pooling)
# 定义2x2的平均池化层
avg_pool = nn.AvgPool2d(kernel_size=2, stride=2)
  1. 步幅卷积(Strided Convolution)
# 使用步幅为2的卷积进行下采样
conv_downsample = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=2, padding=1)

2.3 下采样的数学表达

对于图像处理中的下采样,其数学表达式为:

Y [ n ] = X [ M n ] Y[n] = X[Mn] Y[n]=X[Mn]

其中:

  • X [ n ] X[n] X[n] 是输入信号
  • M M M 是下采样因子
  • Y [ n ] Y[n] Y[n] 是下采样后的信号

高级技巧与最佳实践 🚀

3.1 自适应下采样策略

在这里插入图片描述

3.2 高级采样技术

  1. 基于密度的下采样
from sklearn.neighbors import KernelDensitydef density_based_undersampling(X, y, threshold):kde = KernelDensity(bandwidth=0.5)kde.fit(X[y==1])  # 针对多数类densities = kde.score_samples(X[y==1])return X[densities > threshold]
  1. 基于聚类的下采样
from sklearn.cluster import KMeansdef cluster_based_undersampling(X, y, n_clusters):majority_class = X[y==1]kmeans = KMeans(n_clusters=n_clusters)clusters = kmeans.fit_predict(majority_class)return majority_class[::len(majority_class)//n_clusters]

常见陷阱与解决方案 ⚠️

4.1 信息丢失问题

  1. 问题描述

    • 随机下采样可能丢失关键样本
    • 特征空间覆盖不完整
    • 决策边界变形
  2. 解决方案

    • 使用启发式采样方法
    • 实施分层采样
    • 采用集成学习策略

4.2 采样偏差

  1. 现象

    • 样本分布失真
    • 模型性能不稳定
    • 过拟合风险增加
  2. 缓解措施

    • 交叉验证
    • 多重采样
    • 数据增强

实战案例分析 💻

5.1 信用卡欺诈检测

import pandas as pd
from sklearn.utils import resample
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report# 加载数据
df = pd.read_csv('credit_card_fraud.csv')
majority = df[df.Class==0]
minority = df[df.Class==1]# 下采样多数类
majority_downsampled = resample(majority, replace=False,n_samples=len(minority),random_state=42)# 合并数据
balanced_df = pd.concat([majority_downsampled, minority])# 训练模型
X = balanced_df.drop('Class', axis=1)
y = balanced_df['Class']
clf = RandomForestClassifier(random_state=42)
clf.fit(X, y)

5.2 图像分类中的下采样

import torch.nn as nnclass ConvNet(nn.Module):def __init__(self):super(ConvNet, self).__init__()self.conv1 = nn.Conv2d(3, 16, 3, padding=1)self.pool = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(16, 32, 3, padding=1)self.fc = nn.Linear(32 * 8 * 8, 10)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))  # 下采样x = self.pool(F.relu(self.conv2(x)))  # 下采样x = x.view(-1, 32 * 8 * 8)x = self.fc(x)return x

未来发展趋势 🔮

  1. 智能采样

    • 基于强化学习的采样策略
    • 自适应采样率调整
    • 多目标优化采样
  2. 混合策略

    • 下采样与过采样结合
    • 多种采样方法集成
    • 迁移学习融合
  3. 新兴应用

    • 联邦学习中的采样策略
    • 边缘计算场景下的轻量级采样
    • 自监督学习中的采样技术

总结与建议 📝

下采样是机器学习中一个重要的数据处理技术,其成功应用需要:

  1. 深入理解问题场景

    • 数据分布特点
    • 业务需求约束
    • 计算资源限制
  2. 合理选择策略

    • 根据数据规模选择合适的采样方法
    • 考虑采样带来的影响
    • 权衡效率与效果
  3. 注重实践验证

    • 充分的实验对比
    • 严格的效果评估
    • 持续的优化改进

本文详细介绍了下采样的各个方面,从理论到实践,希望能够帮助读者更好地理解和应用这一技术。在实际应用中,建议读者根据具体场景选择合适的下采样策略,并注意避免常见陷阱。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/75084.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据安全系列4:密码技术的应用-接口调用的身份识别

传送门 数据安全系列1:开篇 数据安全系列2:单向散列函数概念 数据安全系列3:密码技术概述 什么是认证? 一谈到认证,多数人的反应可能就是"用户认证" 。就是应用系统如何识别用户的身份,直接…

STL之map和set

1. 关联式容器 vector、list、deque、 forward_list(C11)等,这些容器统称为序列式容器,因为其底层为线性序列的数据结构,里面存储的是元素本身。 关联式容器也是用来存储数据的,与序列式容器不同的是,其里面存储的是结…

Vue3 其它API Teleport 传送门

Vue3 其它API Teleport 传送门 在定义一个模态框时,父组件的filter属性会影响子组件的position属性,导致模态框定位错误使用Teleport解决这个问题把模态框代码传送到body标签下

《Python Web网站部署应知应会》No4:基于Flask的调用AI大模型的高性能博客网站的设计思路和实战(上)

基于Flask的调用AI大模型的高性能博客网站的设计思路和实战(上) 摘要 本文详细探讨了一个基于Flask框架的高性能博客系统的设计与实现,该系统集成了本地AI大模型生成内容的功能。我们重点关注如何在高并发、高负载状态下保持系统的高性能和…

力扣刷题-热题100题-第27题(c++、python)

21. 合并两个有序链表 - 力扣(LeetCode)https://leetcode.cn/problems/merge-two-sorted-lists/description/?envTypestudy-plan-v2&envIdtop-100-liked 常规法 创建一个新链表,遍历list1与list2,将新链表指向list1与list2…

AI加Python的文本数据情感分析流程效果展示与代码实现

本文所使用数据来自于梯田景区评价数据。 一、数据预处理 数据清洗 去除重复值、空值及无关字符(如表情符号、特殊符号等)。 提取中文文本,过滤非中文字符。 统一文本格式(如全角转半角、繁体转简体)。 中文分词与去停用词 使用 jieba 分词工具进行分词。 加载自定义词…

Microi吾码界面设计引擎之基础组件用法大全【内置组件篇·上】

🎀🎀🎀 microi-pageengine 界面引擎系列 🎀🎀🎀 一、Microi吾码:一款高效、灵活的低代码开发开源框架【低代码框架】 二、Vue3项目快速集成界面引擎 三、Vue3 界面设计插件 microi-pageengine …

【多线程】单例模式和阻塞队列

目录 一.单例模式 1. 饿汉模式 2. 懒汉模式 二.阻塞队列 1. 阻塞队列的概念 2. BlockingQueue接口 3.生产者-消费者模型 4.模拟生产者-消费者模型 一.单例模式 单例模式(Singleton Pattern)是一种常用的软件设计模式,其核心思想是确保…

Vuex状态管理

Vuex Vuex是一个专为Vue.js应用程序开发的状态管理模式。它采用集中式管理应用的所有组件状态,并以相应的规则保证状态以一种可预测的方式发生变化。(类似于在前端的数据库,这里的数据存储在内存当中) 一、安装并配置 在项目的…

从代码学习深度学习 - 使用块的网络(VGG)PyTorch版

文章目录 前言一、VGG网络简介1.1 VGG的核心特点1.2 VGG的典型结构1.3 优点与局限性1.4 本文的实现目标二、搭建VGG网络2.1 数据准备2.2 定义VGG块2.3 构建VGG网络2.4 辅助工具2.4.1 计时器和累加器2.4.2 准确率计算2.4.3 可视化工具2.5 训练模型2.6 运行实验总结前言 深度学习…

Baklib激活企业知识管理新动能

Baklib核心技术架构解析 Baklib的底层架构以模块化设计为核心,融合知识中台的核心理念,通过分布式存储引擎与智能语义分析系统构建三层技术体系。数据层采用多源异构数据接入协议,支持文档、音视频、代码片段等非结构化数据的实时解析与分类…

C之(16)scan-build与clang-tidy使用

C之(16)scan-build与clang-tidy使用 Author: Once Day Date: 2025年3月29日 一位热衷于Linux学习和开发的菜鸟,试图谱写一场冒险之旅,也许终点只是一场白日梦… 漫漫长路,有人对你微笑过嘛… 全系列文章可参考专栏: Linux实践记录_Once_da…

在 Vue 项目中快速集成 Vant 组件库

目录 引言一、找到 src 下的App.js 写入代码。二、安装Vant三、解决 polyfill 问题四、查看依赖五、配置webpack六、引入 Vant七、在组件中使用 Vant八、在浏览器中查看样式总结 引言 在开发移动端 Vue 项目时,选择一个高效、轻量且功能丰富的组件库是提升开发效率…

(二)GEE基础学习初探及案例详解【20250330】

Google Earth Engine(GEE)是由谷歌公司开发的众多应用之一。借助谷歌公司超强的服务器运算能力以及与NASA的合作关系,GEE平台将Landsat、MODIS、Sentinel等可以公开获取的遥感图像数据存储在谷歌的磁盘阵列中,使得GEE用户可以方便的提取、调用和分析海量…

妙用《甄嬛传》中的选妃来记忆概率论中的乘法公式

强烈推荐最近在看的不错的B站概率论课程 《概率统计》正课,零废话,超精讲!【孔祥仁】 《概率统计》正课,零废话,超精讲!【孔祥仁】_哔哩哔哩_bilibili 其中概率论中的乘法公式,老师用了《甄嬛传…

蓝桥杯备考---->并查集之 Lake Counting

这道题就统计有多少个连通块就行了 这时候我们又需要把二维转成一维了,也就是把每一个格子都给一个编号 当我们合并连通块的时候,其实是只需要四个方向的 因为我们是从上往下遍历的,我们遍历到某个位置的时候,它已经和上面部分…

Vue3 项目通过 docxtemplater 插件动态渲染 .docx 文档(带图片)预览,并导出

Vue3 项目通过 docxtemplater 插件动态渲染 .docx 文档(带图片)预览,并导出 预览安装插件示例代码项目目录结构截图实际效果截图 动态渲染 .docx 文档(带图片),预览、导出安装插件docx 模板文件内容完整代码…

养老更安心!智绅科技“智慧”养老系统,智在何处?

在老龄化趋势不断加剧的当下,养老问题成为全社会关注的焦点。 人们对于养老服务的需求日益增长,不仅期望能够得到基本的生活照料,更渴望在安全、舒适、便捷的环境中安享晚年。 智绅科技的“智慧”养老系统应运而生,凭借其独特的…

MySQL 当中的锁

MySQL 当中的锁 文章目录 MySQL 当中的锁MySQL 中有哪些主要类型的锁?请简要说明MySQL 的全局锁有什么用?MySQL 的表级锁有哪些?作用是什么?元数据锁(MetaData Lock,MDL)意向锁(Inte…

vue前端代码作业——待办事项

美化样式示意图: 后端IDEA代码示意图: 代码解释: 1. isAllChecked 计算属性的作用 isAllChecked 用于实现 “全选 / 全不选” 功能,它是一个 双向绑定 的计算属性(因为 v-model 需要同时支持读取和设置值&#xff09…