DeepSeek-R1 蒸馏 Qwen 和 Llama 架构 企业级RAG知识库

“DeepSeek-R1的输出,蒸馏了6个小模型”意思是利用DeepSeek-R1这个大模型的输出结果,通过知识蒸馏技术训练出6个参数规模较小的模型,以下是具体解释:

- **知识蒸馏技术原理**:知识蒸馏是一种模型压缩技术,核心是“教师-学生”模式。

在该场景中,DeepSeek-R1作为“教师模型”,它是一个大型、复杂且性能强大的模型,具有丰富的语言知识和出色的处理能力。以Qwen或Llama架构为基础的1.5B、7B、8B、14B、32B、70B这6个不同参数规模的模型作为“学生模型”。

训练时,让学生模型学习模仿教师模型DeepSeek-R1的行为,将教师模型的知识迁移到学生模型中,使学生模型在参数量和计算复杂度较低的情况下,尽可能接近甚至超越教师模型的效果。 

- **具体操作过程** - **教师模型推理**:将大规模文本数据输入DeepSeek-R1,让其对每个输入样本进行前向传播计算,得到相应的输出结果,这些输出包含软标签、中间层特征等信息,为学生模型的学习提供指导。

- **学生模型学习**:以Qwen或Llama架构为基础的6个不同参数规模的小模型,在训练过程中,以DeepSeek-R1的输出结果为学习目标,通过调整自身的参数,来尽量匹配教师模型的输出。比如在数据蒸馏中,利用DeepSeek-R1生成的大量数据对小模型进行训练;在Logits蒸馏中,让小模型学习模仿DeepSeek-R1的Logits输出的概率分布;

在特征蒸馏中,小模型学习DeepSeek-R1中间层的特征。

- **模型优化与调整**:在学习过程中,通过不断地计算学生模型输出与教师模型输出之间的差异,并利用损失函数来衡量这种差异,如常用的KL散度等。然后通过优化算法,调整学生模型的参数,使得损失函数最小化,即使得学生模型的输出尽可能地接近教师模型的输出,从而完成知识的蒸馏和迁移。 

通过这种蒸馏方式得到的6个小模型,能在保持一定性能的同时,具有更小的体积、更快的运行速度和更低的计算资源需求,更便于部署和应用在各种实际场景中。

DeepSeek 中的 Q3 和 Q4DeepSeek 是一种人工智能语言模型,其开发团队通过量化技术来优化模型的存储和推理效率。量化是一种通过减少模型参数的精度来降低模型存储需求和计算成本的技术,同时尽量保持模型性能。• Q3:表示模型采用了 3位量化。这意味着模型的权重被压缩为3位整数,从而显著减少模型的存储需求和内存占用,同时提高推理速度。不过,量化位宽越低,可能会带来一定的精度损失。• Q4:表示模型采用了 4位量化。与3位量化相比,4位量化通常在精度损失和推理速度之间取得了更好的平衡。它比3位量化占用更多内存,但精度损失更小,推理速度也相对较快。量化技术的作用1. 减少存储需求:量化可以将模型文件的大小显著缩小,方便在资源受限的设备上部署(如个人电脑、移动设备等)。2. 提高推理速度:量化后的模型在计算时更高效,能够更快地生成响应。3. 适应硬件限制:对于显存有限的设备,量化模型可以降低显存需求,使更大规模的模型能够在这些设备上运行。选择 Q3 和 Q4 的建议• 如果你的硬件资源有限(如显存较小),可以选择 Q3 模型,因为它对资源的需求更低。• 如果你需要更高的精度和更好的推理质量,可以选择 Q4 模型,因为它在精度和效率之间取得了较好的平衡。总结在 DeepSeek 的上下文中,Q3 和 Q4 是量化技术的标识符,分别表示 3位和 4位量化。它们用于优化模型的存储和推理效率,适合不同的硬件和应用场景

Qwen和Llama架构都是基于Transformer架构的语言模型架构,以下是它们的具体介绍及对比: 

  相同点 - **基础架构**:Qwen和Llama都采用了Decoder-only架构,只使用Transformer的解码器部分,这种架构使得模型在生成文本方面具有优势,符合生成任务的自回归特性,在训练过程中只需要关注前面的token来生成后续内容。 

- **位置编码**:二者都采用了Rotary Positional Embedding(RoPE),它能更好地处理文本中的长序列依赖关系,使模型能够捕捉到文本中不同位置之间的语义信息,有助于提高生成文本的质量和连贯性。

- **归一化**:都使用了RMS Norm(Root Mean Square Layer Normalization),有助于提高模型训练的稳定性和收敛速度,使得模型能够更好地学习语言的统计规律。 

- **注意力机制**:都采用了Grouped-Query Attention(GQA),可以在一定程度上降低模型的计算量,同时保持较好的性能,提高了模型处理大规模文本数据的效率。 

### 不同点 - **特色与优化方向** - **Qwen**:支持更长的上下文和多语言,在中文语境理解等方面有深入的优化,训练数据包含了大量中文领域的专业知识和应用场景数据,对中文的处理更加细腻和准确。同时Qwen2.5-Max采用超大规模MoE(混合专家)架构,基于超过20万亿token的预训练数据及精心设计的后训练方案进行训练,以提升模型的性能和泛化能力。

- **Llama**:开源且性能强大,由Meta研发,在通用知识和语言处理上表现出色,在语法理解、语义生成等方面有很好的基础,训练数据覆盖了广泛的互联网文本,使得模型具有较强的通用性,尤其在处理长文本、多轮对话时具备一定优势。 

- **最大序列长度** - **Qwen**:如Qwen-72B最大序列长度可达32k,具有很强的长文本处理能力,能够处理更长的上下文信息,在生成长篇文本、进行复杂的对话等任务中具有优势。 - **Llama**:Llama2的最大序列长度为4k,相对Qwen-72B较短,但通过一些技术手段也可进行外推,以处理更长的文本。

2、【DeepSeek大模型】企业级RAG知识库项目实战_哔哩哔哩_bilibili



 

企业级RAG(Retrieval-Augmented Generation)知识库是一种结合了检索技术和生成式人工智能技术的企业知识管理工具,以下是关于它的详细介绍:

### 定义与原理 - **定义**:企业级RAG知识库是在企业层面构建的,将知识检索与内容生成相融合的知识存储和应用系统。它旨在利用先进的技术手段,更高效地管理和利用企业内的各种知识资源,为企业的决策、运营、创新等活动提供有力支持。

- **原理**:该知识库首先会对企业内大量的结构化和非结构化数据进行收集和整理,这些数据包括文档、报告、邮件、会议记录等。然后,运用自然语言处理(NLP)技术对这些数据进行分析和理解,提取其中的关键信息并建立索引。当用户提出问题或需求时,RAG模型会同时进行检索和生成操作。

一方面,通过检索模块从知识库中快速找到与问题相关的最匹配的知识片段;

另一方面,利用生成式模型基于检索到的信息以及模型自身的语言理解和生成能力,生成更加完整、准确、有针对性的回答或解决方案。 

### 核心优势 - **提高知识获取效率**:员工能够快速获取准确的知识,减少查找信息的时间浪费,提高工作效率。例如,在处理客户咨询或解决技术问题时,能迅速从知识库中获取相关的产品信息、解决方案等。

- **增强知识应用效果**:生成式的回答方式可以为员工提供更具针对性和实用性的知识内容,帮助他们更好地理解和应用知识,提升工作质量。比如,在制定市场推广方案时,能获取到结合市场动态和企业自身情况生成的个性化建议。

- **促进知识创新与共享**:鼓励员工之间的知识交流和共享,不同部门、不同岗位的员工可以通过知识库分享经验和见解,激发创新思维,推动企业的知识创新和发展。 

### 应用场景 

- **客户服务**:客服人员可以借助RAG知识库快速准确地回答客户的问题,提供优质的客户服务体验,提高客户满意度。比如,在客户咨询产品功能、使用方法等问题时,客服能迅速从知识库中获取相关内容并进行详细解答。 

- **员工培训**:作为员工培训的重要资源,新员工可以通过知识库快速了解企业的规章制度、业务流程、产品知识等,加快入职适应速度;老员工也可以利用知识库进行持续学习,提升自身技能。 

- **决策支持**:为企业管理层提供决策所需的知识和信息支持,帮助他们做出更明智的决策。例如,在制定战略规划、投资决策时,能够从知识库中获取行业趋势、市场分析、企业历史数据等多方面的信息。

DeepSeek 中的 Q3 和 Q4DeepSeek 是一种人工智能语言模型,其开发团队通过量化技术来优化模型的存储和推理效率。量化是一种通过减少模型参数的精度来降低模型存储需求和计算成本的技术,同时尽量保持模型性能。

• Q3:表示模型采用了 3位量化。这意味着模型的权重被压缩为3位整数,从而显著减少模型的存储需求和内存占用,同时提高推理速度。不过,量化位宽越低,可能会带来一定的精度损失。• Q4:表示模型采用了 4位量化。与3位量化相比,4位量化通常在精度损失和推理速度之间取得了更好的平衡。它比3位量化占用更多内存,但精度损失更小,推理速度也相对较快。量化技术的作用1. 减少存储需求:量化可以将模型文件的大小显著缩小,方便在资源受限的设备上部署(如个人电脑、移动设备等)。

2. 提高推理速度:量化后的模型在计算时更高效,能够更快地生成响应。3. 适应硬件限制:对于显存有限的设备,量化模型可以降低显存需求,使更大规模的模型能够在这些设备上运行。选择 Q3 和 Q4 的建议• 如果你的硬件资源有限(如显存较小),可以选择 Q3 模型,因为它对资源的需求更低。• 如果你需要更高的精度和更好的推理质量,可以选择 Q4 模型,因为它在精度和效率之间取得了较好的平衡。总结在 DeepSeek 的上下文中,Q3 和 Q4 是量化技术的标识符,分别表示 3位和 4位量化。它们用于优化模型的存储和推理效率,适合不同的硬件和应用场景

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/71280.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

el-input无法输入0.0001的小数,自动转换为0在vue3中的bug

今天遇到个bug&#xff0c;el-input中只能输入0.1或者输入0.1再加上00成为0.001&#xff0c;不能直接输入0.001&#xff0c;否则自动转换为0。需要去掉 v-model.number后面的 .number 源代码&#xff1a; <el-table-column label"实发数量" width"120"…

Spring事务原理 一

Spring事务管理有 声明式事务 和 编程式事务 两种方式&#xff0c;实现对数据库操作的ACID控制。其核心思想是将事务管理与业务逻辑解耦&#xff0c;开发者通过简单注解或配置即可管理复杂事务。 开启Spring事务&#xff0c;本质上就是在Spring容器中增加了一个Advisor&#x…

一周学会Flask3 Python Web开发-Debug模式开启

锋哥原创的Flask3 Python Web开发 Flask3视频教程&#xff1a; 2025版 Flask3 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili 默认情况&#xff0c;项目开发是普通模式&#xff0c;也就是你修改了代码&#xff0c;必须重启项目&#xff0c;新代码才生效&…

使用EasyExcel和多线程实现高效数据导出

​ 使用EasyExcel和多线程实现高效数据导出 1. 概述 在企业级应用中&#xff0c;数据导出是一个常见的需求。为了提高导出效率&#xff0c;尤其是在处理大量数据时&#xff0c;我们可以结合使用EasyExcel库和多线程技术。本文将详细介绍如何通过EasyExcel和多线程技术实现高…

[qt5学习笔记]Application Example示例程序源码解析

开发环境问题 vs2022下直接打开ui、ts文件失败 解决办法如下图&#xff0c; 设置designer独立运行。估计是嵌入运行存在些许bug。 同理&#xff0c;ts编辑工具linguist也存在这个问题。 qrc rc的编辑嵌入编辑都正常&#xff0c;但分离式更稳定可靠。 qt creator编译失败 原…

Jetson Agx Orin平台JP6.0-r36.3版本修复了vi模式下的原始图像损坏(线条伪影)

1.问题描述 这是JP-6.0 GA/ l4t-r36.3.0的一个已知问题 通过vi模式捕获的图像会导致异常线条 参考下面的快照来演示这些线伪影 这个问题只能通过VI模式进行修复,不应该通过LibArgus看到。 此外,这是由于内存问题。 由于upstream已经将属性名称更改为“dma-noncoherent”…

[创业之路-299]:图解金融体系结构

一、金融体系结构 1.1 概述 金融体系结构是一个国家以行政的、法律的形式和运用经济规律确定的金融系统结构&#xff0c;以及构成这个系统的各种类型的银行和非银行金融机构的职能作用和相互关系。以下是对金融体系结构的详细分析&#xff1a; 1、金融体系的构成要素 现代金…

0基础学LabVIEW

对于零基础的朋友来说&#xff0c;学习LabVIEW需要一个科学的学习路径和方法。通过观看优质的B站教程打好基础&#xff0c;再结合实际项目进行实践操作&#xff0c;能够快速提升LabVIEW的应用能力。以下是从入门到进阶的学习建议。 ​ 一、利用B站入门教程打基础 筛选优质教程…

Query String 传递 json 对象参数、map参数

?params[name]John&params[age]30&params[isStudent]true params[name] 和 params[age] 中的 [] 是非法字符。 服务器&#xff08;Apache Tomcat&#xff09;默认不允许在 URL 中使用 []。 对 [] 进行 URL 编码 将 [] 编码为 %5B 和 %5D。 示例&#xff1a; ?pa…

腿足机器人之六- 前向运动学

腿足机器人之六- 前向运动学 刚体运动学基础坐标系定义旋转矩阵与欧拉角齐次变换矩阵&#xff08;平移旋转的统一表示&#xff09; 运动链建模串联运动链结构&#xff08;从基座到末端的关节连接&#xff09;标准Denavit-Hartenberg&#xff08;D-H&#xff09;参数法改进D-H参…

正则表达式(Regular expresssion)

正则表达式 匹配单次 . &#xff1a;匹配任意一个字符 [ ] &#xff1a;匹配[ ]里举例的任意一个字符 /d &#xff1a;匹配数字0-9 /D &#xff1a;匹配非数字 /s &#xff1a;匹配空白或tab建 /S &#xff1a;匹配非空白 /w &#xff1a;…

DarkLabel 2.4使用指南:高效标注视频数据目标检测标签

工具概述 DarkLabel 2.4 是一款强大的多功能标注工具&#xff0c;专为计算机视觉开发者设计&#xff0c;旨在提升标注工作的效率和精确度。其智能标注引擎支持两项核心功能&#xff1a;线性插值标注与多目标跟踪&#xff0c;极大地优化了视频标注过程。 &#xff08;1&#x…

rabbitmq五种模式的总结——附java-se实现(详细)

rabbitmq五种模式的总结 完整项目地址&#xff1a;https://github.com/9lucifer/rabbitmq4j-learning 一、简单模式 &#xff08;一&#xff09;简单模式概述 RabbitMQ 的简单模式是最基础的消息队列模式&#xff0c;包含以下两个角色&#xff1a; 生产者&#xff1a;负责发…

网页制作01-html,css,javascript初认识のhtml的基本标记

一、 Html简介 英文全称是 hyper text markup language,超文本标记语言,是全球广域网上描述网页内容和外观的标准. Html作为一款标记语言,本身不能显示在浏览器中.标记语言经过浏览器的解释和编译,才能正确地反映html标记语言的内容. 1.html 的基本标记 1&#xff09;头部标…

Blackbox.AI:高效智能的生产力工具新选择

前言 在当今数字化时代&#xff0c;一款高效、智能且功能全面的工具对于开发者、设计师以及全栈工程师来说至关重要。Blackbox.AI凭借其独特的产品特点&#xff0c;在众多生产力工具中脱颖而出&#xff0c;成为了我近期测评的焦点。以下是我对Blackbox.AI的详细测评&#xff0…

海康摄像头IPV6模式,手动,自动,路由公告

海康摄像头DS-2DC7220IW-A 网络设置中的IPv6配置选项。IPv6是互联网协议&#xff08;IP&#xff09;的第六版&#xff0c;用于替代IPv4&#xff0c;提供更多的IP地址和改进的网络功能。图片中的选项允许用户选择如何配置设备的IPv6网络连接&#xff1a; 手动&#xff1a;用户可…

【kafka系列】Kafka如何实现高吞吐量?

目录 1. 生产者端优化 核心机制&#xff1a; 关键参数&#xff1a; 2. Broker端优化 核心机制&#xff1a; 关键源码逻辑&#xff1a; 3. 消费者端优化 核心机制&#xff1a; 关键参数&#xff1a; 全链路优化流程 吞吐量瓶颈与调优 总结 Kafka的高吞吐能力源于其生…

sql sqlserver的特殊函数COALESCE和PIVOT的用法分析

一、COALESCE是一个返回参数中第一个非NULL值的函数&#xff0c; 列如&#xff1a;COALESCE&#xff08;a,b,c,d,e&#xff09;;可以按照顺序取abcde&#xff0c;中的第一个非空数据&#xff0c;abcde可以是表达式 用case when 加ISNULL也可以实现&#xff0c;但是写法复杂了…

unity学习44:学习Animator 的一个动作捕捉网站,实测好用

目录 1 动作捕捉网站 2 注册和下载 3 比如首页的内容&#xff0c;可以直接下载为fbx模型文件 4 上传并修改 5 在 unity里使用 5.1 下载的fbx文件直接拖入到unity 5.2 动画修改 5.3 游戏里播放 1 动作捕捉网站 一个动作捕捉网站 AI神器集合网站 千面视频动捕 | AI神器…

CPP集群聊天服务器开发实践(六):Redis发布订阅消息队列及服务器集群通信

前文实现了单服务器与多客户端之间的通信以及聊天业务&#xff0c;同时为了增大并发量利用nginx实现多服务器的集群负载均衡&#xff0c;但是一个关键的问题是要实现多服务器之间的通信&#xff0c;这里采用Redis的发布订阅消息队列实现。 不同客户端可能连接在不同服务器上&am…