小白零基础如何搭建CNN

1.卷积层
在PyTorch中针对卷积操作的对象和使用的场景不同,如有1维卷积、2维卷积、
3维卷积与转置卷积(可以简单理解为卷积操作的逆操作),但它们的使用方法比较相似,都可以从torch.nn模块中调用,需要调用的类如表2-4所示。

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')

参数说明
in_channels:输入数据的通道数。例如,对于 RGB 图像,in_channels=3。
out_channels:输出数据的通道数,即卷积核的数量。
kernel_size:卷积核的大小,可以是一个整数(表示正方形卷积核),也可以是一个元组(表示矩形卷积核)。例如,kernel_size=3 或 kernel_size=(3, 5)。
stride:卷积核移动的步长,默认为 1。可以是一个整数(表示水平和垂直方向的步长相同),也可以是一个元组(分别表示水平和垂直方向的步长)。
padding:输入数据的填充大小,默认为 0。可以是一个整数(表示水平和垂直方向的填充相同),也可以是一个元组(分别表示水平和垂直方向的填充)。填充的作用是增加输入数据的边界,使卷积操作后输出的尺寸更大或保持不变。
dilation:卷积核的扩张率,默认为 1。可以是一个整数(表示水平和垂直方向的扩张率相同),也可以是一个元组(分别表示水平和垂直方向的扩张率)。扩张率用于增加卷积核的感受野。
groups:分组卷积的组数,默认为 1。当 groups > 1 时,输入通道和输出通道会被分成若干组,每组分别进行卷积操作。
bias:是否为卷积层添加偏置项,默认为 True。
padding_mode:填充模式,默认为 ‘zeros’,表示用零填充。其他可选值包括 ‘reflect’ 和 ‘replicate’。
在这里插入图片描述

inputimport torch
import torch.nn as nn# 创建一个 Conv2d 实例
conv_layer = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1)# 创建一个输入张量(模拟一个 3 通道的 28x28 图像)
input_tensor = torch.randn(1, 3, 28, 28)  # (batch_size, channels, height, width)# 使用卷积层对输入张量进行卷积操作
output_tensor = conv_layer(input_tensor)print("输入张量的形状:", input_tensor.shape)
print("输出张量的形状:", output_tensor.shape)
output:输入张量的形状: torch.Size([1, 3, 28, 28])

1.1 填充层
填充(Padding) 是一种重要的操作,通常用于卷积层(Conv2d)和池化层(MaxPool2d、AvgPool2d 等)。填充的主要目的是在输入数据的边界上添加额外的值(通常是零),以控制卷积或池化操作后的输出尺寸在前面介绍的卷积操作中,可以发现经过卷积后,输出特征映射的尺寸会变小,卷积后的结果中损失了部分值,输入图像的边缘被“修剪”掉了,这是因为边缘上的像素永远不会位于卷积核中心,而卷积核也不能扩展到边缘区域以外。如果还希望输入和输出的大小应保持一致,需要在进行卷积操作前,对原矩阵进行边界填充(padding),也就是在矩阵的边界上填充一些值,以增加矩阵的大小。虽然卷积操作可以使用填充参数0进行边缘填充,但是在PyTorch中还提供了其他的填充函数,可以完成更复杂的填充任务,例如反射填充、复制填充等。针对不同的填充方式,下面使用2维矩阵的2D填充为例,展示了不同方法的填充效果,如图2-3所示
在这里插入图片描述
在这里插入图片描述
1.2 激活函数
。PyTorch提供了十几种激活函数层所对应的类,但常用的激活函数通常为S型
(Sigmoid)激活函数、双曲正切(Tanh)激活函数、线性修正单元(ReLU)激活函数等。常激活函数类和功能如表2-7所示。
在这里插入图片描述
在这里插入图片描述
1.3 归一化函数
归一化函数可以放置在卷积层和激活函数之间,也可以在激活函数之后。具体位置取决于所使用的归一化方法和网络架构的设计.常用的归一化函数层分别为批量归一化、组归一化、层归一化以及样本归一化。在图2-5中展示了各种归一化函数层的作用维度示意图,其中N表示数据中的batch(批量)维度,C表示channel(通道)维度,阴影部分表示要归一化为相同均值和方差的内容。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.池化层
池化会选取一定大小区域,将该区域内的像素值使用一个代表元素表示。如果使用平均值代替,称为平均值池化,如果使用最大值代替则称为最大值池化。这两种池化方式的示意图如图2-2所示
在这里插入图片描述在PyTorch中, 提 供 了 多 种 池 化 的 类, 分 别 是 最 大 值 池 化(MaxPool)、 最大 值 池 化 的 逆 过 程(MaxUnPool)、 平 均 值 池 化(AvgPool)与 自 适 应 池 化(AdaptiveMaxPool、AdaptiveAvgPool)等。并且均提供了1维、2维和3维的池化操作。具体的池化类和功能如表2-5所示。
在这里插入图片描述

input#定义最大池化层
max_pool=nn.MaxPool2d(kernel_size=2,stride=2,padding=0)
#创建一个输入张量(模拟一个3通道的8*8图像)
input_tensor=torch.randn(1,3,8,8)#(batch_size,channels,height,width)
output_tensor=max_pool(input_tensor)
print("输入张量的形状:", input_tensor.shape)
print("输入张量的形状:", output_tensor.shape)
output:输入张量的形状: torch.Size([1, 3, 8, 8])
输入张量的形状: torch.Size([1, 3, 4, 4])

在这里插入图片描述
3.全连接层
它的作用是把输入的特征进行“混合”和“转换”,生成新的特征,最终用于分类或回归任务。
全连接层通常由两部分组成:
a.线性变换(nn.Linear):把输入特征转换成输出特征。
b.激活函数:在输出上应用非线性激活函数,比如 ReLU、Sigmoid 等,增加模型的非线性能力

torch.nn.Linear(in_features, out_features, bias=True)

在这里插入图片描述

input:#创建一个全连接层
fc_layer=nn.Linear(in_features=3,out_features=2,bias=True)
#创建一个输入张量(模拟一个人的身高、体重、年龄)
input_tensor=torch.tensor([[175.0,70.0,25.0]])
#应用全连接层
output_tensor=fc_layer(input_tensor)
import torch.nn.functional as F
#应用激活函数
activated_output=F.relu(output_tensor)
print("输入张量的形状:",input_tensor.shape)
print("输入张量的形状:",output_tensor.shape)
print("输入张量的形状:",activated_output)
output:输入张量的形状: torch.Size([1, 3])
输入张量的形状: torch.Size([1, 2])
输入张量的形状: tensor([[87.3310, 44.2483]], grad_fn=<ReluBackward0>)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/70926.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

21vue3实战-----git husky和git commit规范

21vue3实战-----git husky和git commit规范 1.husky工具1.1目的1.2如何做到这一点?1.3步骤 2.git commit规范2.1使用Commitizen自动生成规范格式供选择2.2代码提交风格2.3代码提交验证 之前在https://blog.csdn.net/fageaaa/article/details/145474065文章中已经讲了在vue项目…

arduino扩展:Arduino Mega 控制 32 个舵机(参考表情机器人)

参考&#xff1a;表情机器人中使用22个舵机的案例 引言 在电子制作与自动化控制领域&#xff0c;Arduino 凭借其易用性和强大的扩展性备受青睐。Arduino Mega 作为其中功能较为强大的一款开发板&#xff0c;具备丰富的引脚资源&#xff0c;能够实现复杂的控制任务。舵机作为常…

PyQt学习记录03——批量设置水印

0. 目录 PyQt学习记录01——加法计算器 PyQt学习记录02——串口助手 1. 前言 本次主要是为了学习Qt中的 QFileDialog 函数&#xff0c; QFileDialog.getExistingDirectory&#xff1a;用于选择文件夹&#xff0c;返回的是一个文件夹路径。 QFileDialog.getOpenFileName&…

Visual Studio 使用 “Ctrl + /”键设置注释和取消注释

问题&#xff1a;在默认的Visual Studio中&#xff0c;选择单行代码后&#xff0c;按下Ctrl /键会将代码注释掉&#xff0c;但再次按下Ctrl /键时&#xff0c;会进行双重注释&#xff0c;这不是我们想要的。 实现效果&#xff1a;当按下Ctrl /键会将代码注释掉&#xff0c;…

社区版IDEA中配置TomCat(详细版)

文章目录 1、下载Smart TomCat2、配置TomCat3、运行代码 1、下载Smart TomCat 由于小编的是社区版&#xff0c;没有自带的tomcat server&#xff0c;所以在设置的插件里面搜索&#xff0c;安装第一个&#xff08;注意&#xff1a;安装时一定要关闭外网&#xff0c;小编因为这个…

Flink-DataStream API

一、什么样的数据可以用于流式传输 Flink的DataStream API 允许流式传输他们可以序列化的任何内容。Flink自己的序列化程序用于 基本类型&#xff1a;即字符串、长、整数、布尔值、数组复合类型&#xff1a;元组、POJO和Scala样例类 基本类型我们已经很熟悉了&#xff0c;下…

渗透利器:Burp Suite 联动 XRAY 图形化工具.(主动扫描+被动扫描)

Burp Suite 联动 XRAY 图形化工具.&#xff08;主动扫描被动扫描&#xff09; Burp Suite 和 Xray 联合使用&#xff0c;能够将 Burp 的强大流量拦截与修改功能&#xff0c;与 Xray 的高效漏洞检测能力相结合&#xff0c;实现更全面、高效的网络安全测试&#xff0c;同时提升漏…

Java 大视界 -- 深入剖析 Java 在大数据内存管理中的优化策略(49)

&#x1f496;&#x1f496;&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎你们来到 青云交的博客&#xff01;能与你们在此邂逅&#xff0c;我满心欢喜&#xff0c;深感无比荣幸。在这个瞬息万变的时代&#xff0c;我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…

JVM ②-双亲委派模型 || 垃圾回收GC

这里是Themberfue 在上节课对内存区域划分以及类加载的过程有了简单的了解后&#xff0c;我们再了解其他两个较为重要的机制&#xff0c;这些都是面试中常考的知识点&#xff0c;有必要的话建议背出来&#xff0c;当然不是死记硬背&#xff0c;而是要有理解的背~~~如果对 JVM …

html文件怎么转换成pdf文件,2025最新教程

将HTML文件转换成PDF文件&#xff0c;可以采取以下几种方法&#xff1a; 一、使用浏览器内置功能 打开HTML文件&#xff1a;在Chrome、Firefox、IE等浏览器中打开需要转换的HTML文件。打印对话框&#xff1a;按下CtrlP&#xff08;Windows&#xff09;或CommandP&#xff08;M…

2025 西湖论剑wp

web Rank-l 打开题目环境&#xff1a; 发现一个输入框&#xff0c;看一下他是用上面语言写的 发现是python&#xff0c;很容易想到ssti 密码随便输&#xff0c;发现没有回显 但是输入其他字符会报错 确定为ssti注入 开始构造payload&#xff0c; {{(lipsum|attr(‘global…

Web前端开发--HTML

HTML快速入门 1.新建文本文件&#xff0c;后缀名改为.html 2.编写 HTML结构标签 3.在<body>中填写内容 HTML结构标签 特点 1.HTML标签中不区分大小写 2.HTML标签属性值中可以使用单引号也可使用双引号 3.HTML语法结构比较松散&#xff08;但在编写时要严格一点&…

网络工程师 (30)以太网技术

一、起源与发展 以太网技术起源于20世纪70年代&#xff0c;最初由Xerox公司的帕洛阿尔托研究中心&#xff08;PARC&#xff09;开发。最初的以太网采用同轴电缆作为传输介质&#xff0c;数据传输速率为2.94Mbps&#xff08;后发展为10Mbps&#xff09;&#xff0c;主要用于解决…

ONES 功能上新|ONES Copilot、ONES TestCase、ONES Wiki 新功能一览

ONES Copilot 支持基于当前查看的工作项相关信息&#xff0c;利用 AI 模型&#xff0c;在系统中进行相似工作项的查找&#xff0c;包括基于已关联工作项的相似数据查找。 应用场景&#xff1a; 在查看工作项时&#xff0c;可利用 AI 模型&#xff0c;基于语义相似度&#xff0c…

从 X86 到 ARM :工控机迁移中的核心问题剖析

在工业控制领域&#xff0c;技术的不断演进促使着工控机从 X86 架构向 ARM 架构迁移。然而&#xff0c;这一过程并非一帆风顺&#xff0c;面临着诸多关键挑战。 首先&#xff0c;软件兼容性是一个重要问题。许多基于 X86 架构开发的工业控制软件可能无法直接在 ARM 架构上运行…

《qt open3d网格平滑》

qt open3d网格平滑 效果展示二、流程三、代码效果展示 二、流程 创建动作,链接到槽函数,并把动作放置菜单栏 参照前文 三、代码 1、槽函数实现 void on_actionFilterSmoothSimple_triggered();void MainWindow::on_actionF

Redis 的缓存雪崩、缓存穿透和缓存击穿详解,并提供多种解决方案

本文是对 Redis 知识的补充&#xff0c;在了解了如何搭建多种类型的 Redis 集群&#xff0c;并清楚了 Redis 集群搭建的过程的原理和注意事项之后&#xff0c;就要开始了解在使用 Redis 时可能出现的突发问题和对应的解决方案。 引言&#xff1a;虽然 Redis 是单线程的&#xf…

路由过滤方法与常用工具

引言 在前面我们已经学习了路由引入&#xff0c;接下来我们就更进一步来学习路由过滤 前一篇文章&#xff1a;重发布&#xff1a;路由引入&#xff08;点击即可&#xff09; 路由过滤 定义&#xff1a;路由器在发布或者接收消息时&#xff0c;可能需要对路由信息进行过滤。 作用…

元宵佳节,我的创作纪念日:技术之路的回顾与展望

今天是元宵节&#xff0c;一个象征着团圆与美好的节日。巧合的是&#xff0c;今天也是我作为技术博客博主的创作纪念日。在这个特别的日子里&#xff0c;我想和大家分享我的创作故事&#xff0c;回顾初心、总结收获、展望未来&#xff0c;同时也希望能为正在技术道路上探索的你…

【STM32】H743的以太网MAC控制器的一个特殊功能

调试743的MAC&#xff0c;翻阅手册的时候&#xff0c;发现了一个有意思的功能 混杂模式 H743的MAC控制器&#xff0c;可以设置为混杂模式&#xff0c;这就意味着它可以做一些网络监控的应用&#xff0c;譬如连接具备端口镜像功能的交换机&#xff0c;然后直接代替PC实现网络数据…