从基础到人脸识别与目标检测

前言

从本文开始,我们将开始学习ROS机器视觉处理,刚开始先学习一部分外围的知识,为后续的人脸识别、目标跟踪和YOLOV5目标检测做准备工作。我采用的笔记本是联想拯救者游戏本,系统采用Ubuntu20.04,ROS采用noetic。

颜色编码格式,图像格式和视频压缩格式

(1)RGB和BGR:这是两种常见的颜色编码格式,分别代表了红、绿、蓝三原色。不同之处在于,RGB按照红、绿、蓝的顺序存储颜色信息,而BGR按照蓝、绿、红的顺序存储。

rgb8图像格式:常用于显示系统,如电视和计算机屏幕。RGB值以8 bits表示每种颜色,总共可以表示256×256×256=16777216种颜色。例如: (255,0,0) 表示红色,(0,255,0) 表示绿色,(0,0,255) 表示蓝色。
bgr8图像格式:由一些特定的硬件制造商采用,软件方面最著名的就是opencv,其默认使用BGR的颜色格式来处理图像。与RGB不同, (0,0,255) 在BGR中表示红色,(0,255,0) 仍然表示绿色,(255,0,0) 表示蓝色。

在自动驾驶里,使用rgb8图像格式的图像,一般称为原图,是数据量最大的格式,没有任何压缩。(2)(2)YUV:这是另一种颜色编码方法,与RGB模型不同的是,它将图像信息分解为亮度(Y)和色度(U和V)两部分。这种方式更接近于人类对颜色的感知方式。

Y:代表亮度信息,也就是灰阶值。
U:从色度信号中减去Y得到的蓝色信号的差异值。
V:从色度信号中减去Y得到的红色信号的差异值。

YUV颜色编码主要用在电视系统以及视频编解码标准中,在这些系统中,Y通道信息可以单独使用,这样黑白电视机也能接收和显示信号。而彩色信息则通过U和V两个通道传输,只有彩色电视机才能处理。这样设计兼容了黑白电视和彩色电视。YUV色彩空间相比RGB色彩空间,更加符合人眼对亮度和色彩的敏感度,在视频压缩时,可以按照人眼的敏感度对YUV数据进行压缩,以达到更高的压缩比。由于历史和技术的原因,YUV的标准存在多种,例如YUV 4:4:4、YUV 4:2:2和YUV 4:2:0等,这些主要是针对U和V通道的采样方式不同定义的。采样不同,对应的压缩比也不同。

(3)图像压缩格式

jpeg:Joint Photographic Experts Group,是一种常见的用于静态图像的损失性压缩格式,它特别适合于全彩色和灰度图片,被广泛使用。通常情况下,JPEG可以提供10:1到20:1的有损压缩比,根据图像质量自由调整。
png: Portable Network Graphics,PNG是一种无损压缩格式,主要使用了DEFLATE算法。由于这是无损压缩,所以解压缩图像可以完全恢复原始数据。被广泛应用于需要高质量图像的场景,如网页设计、艺术作品等。
bmp:Bitmap,BMP是Windows系统中常用的一种无压缩的位图图像格式,通常会创造出较大的文件。

位图(Bitmap)是一种常见的计算机图形,最小单位是像素,每个像素都包含一定量的信息,如颜色和亮度等。位图图像的一个主要特点就是,在放大查看时,可以看到图像的像素化现象,也就是我们常说的"马赛克"。BMP、JPEG、GIF、PNG等都是常见的位图格式。

(4)H264和H265:这是两个视频压缩格式,也是两种视频编解码标准。以1280*720的摄像头为例,如果是rgb8格式的原图,一帧图像的大小是:

3*1280*720=27648000字节,即2.7648MB

如果是一小时的视频,那将是非常大的数据量,对网络传输,数据存储,都是很大的压力。而H264通过种种帧间操作,可以达到10:1到50:1的压缩比,甚至更高。H265更进一步,压缩比更高,用来解决4K或8K视频的传输。

更具体的原理见:图像编码与 H264 基础知识在自动驾驶领域,图像数据也使用h264格式,主要用于数采和回放,控制数据量。

usb_cam

(1)linux针对摄像头硬件有一套Video for Linux内核驱动框架,对应提供的有命令行工具 v4l2-ctl (Video for Linux 2),可以查看摄像头硬件信息:

ls /dev/video0  //一般video0是笔记本自带摄像头设备文件
v4l2-ctl -d /dev/video0 --all

这里截取了部分关键信息,下面的usb_cam的launch文件将用到:

(2)usb_cam是ros里usb camera的软件包,一般称为ros摄像头驱动,但这是一个应用程序,其调用v4l2并通过ros topic发出图像数据。搞机器视觉,第一步就是要有图。安装并启动usb_cam,查看图像:

sudo apt-get install ros-noetic-usb-cam 
roslaunch usb_cam usb_cam-test.launch
rqt_image_view

usb_cam-test.launch:

<launch><node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >//指定设备文件名,默认是/dev/video0<param name="video_device" value="/dev/video0" />// 宽和高分辨率	<param name="image_width" value="640" /><param name="image_height" value="480" />// 像素编码,可选值:mjpeg,yuyv,uyvy<param name="pixel_format" value="yuyv" /><param name="color_format" value="yuv422p" />// camera坐标系名<param name="camera_frame_id" value="usb_cam" />// IO通道,可选值:mmap,read,userptr,大数据量信息一般用mmap<param name="io_method" value="mmap"/></node><node name="image_view" pkg="image_view" type="image_view" respawn="false" output="screen">// 指定发出的topic名:/usb_cam/image_raw<remap from="image" to="/usb_cam/image_raw"/><param name="autosize" value="true" /></node>
</launch>

(3)/usb_cam/image_raw的数据结构体:

rostopic info /usb_cam/image_raw
rosmsg show  sensor_msgs/Image

//消息头,每个topic都有
std_msgs/Header header	uint32 seqtime stamp// 坐标系名string frame_id
// 高和宽分辨率
uint32 height
uint32 width
// 无压缩的图像编码格式,包括rgb8,YUV444
string encoding
// 图像数据的大小端存储模式
uint8 is_bigendian
// 一行图像数据的字节数量,作为步长参数
uint32 step
// 存储图像数据的柔性数组,大小是step*height
uint8[] data

/usb_cam/image_raw内容展示:

(4)/usb_cam/image_raw/compressed的数据结构体:

rostopic info /usb_cam/image_raw/compressed
rosmsg show sensor_msgs/CompressedImage

std_msgs/Header headeruint32 seqtime stampstring frame_id
// 压缩的图像编码格式,jpeg,png
string format
uint8[] data

/usb_cam/image_raw/compressed内容展示:

摄像头标定

标定引入

(1)Calibration:翻译过来就是校准和标定。(2)摄像头标定:Camera Calibration是计算机视觉中的一种关键技术,其目的是确定摄像头的内部参数(Intrinsic Parameters)和外部参数(Extrinsic Parameters)。

内部参数:包括焦距、主点坐标以及镜头畸变等因素。这些参数与相机本身的硬件有关,如镜头和图像传感器等,一般由厂家提供。
外部参数:摄像头相对于环境的位置和方向。例如,它可能描述了一个固定摄像头相对于周围环境的姿态或者安装位置。以汽车为例,外参包括各个摄像头之间的关系,摄像头与radar,摄像头与lidar的关系。

(3)汽车各种传感器的之间的相对位置和朝向,用3自由度的旋转矩阵和3自由度的平移向量表示,这些外参由整车厂自己标。一般整车下线之后,进入特定的房间,使用静态标靶、定位器的等高精度设备,完成Camera、radar、Lidar等传感器的标定,称之为产线标定,也叫做下线标定。

笔记本摄像头内参标定

这里我们使用标定常用的标靶图形,完成笔记本摄像头的内参标定。usb_cam可以使用内参标定,避免图像畸变。(1)安装标定功能包(ubuntu20.04+noetic)

sudo apt-get install ros-noetic-camera-calibration

(2)创建 robot_vision 软件包,并标定相关文件

cd ~/catkin_ws/src
catkin_create_pkg robot_vision cv_bridge image_transport sensor_msgs std_msgs geometry_msgs message_generation roscpp rospycd robot_vision 
mkdir doc launch
touch launch/cameta_calibration.launch

标定靶图片:

cameta_calibration.launch:

<launch>// 使用usb_cam包,发出/usb_cam/image_raw图像数据<node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" ><param name="video_device" value="/dev/video0" /><param name="image_width" value="640" /><param name="image_height" value="480" /><param name="pixel_format" value="yuyv" /><param name="camera_frame_id" value="usb_cam" /><param name="io_method" value="mmap"/></node>// 使用标定功能包,完成标定。// 参数中,8x6表示横向8个内部角点,竖向有6个// square 是每个棋盘格的边长// /usb_cam/image_raw是监听的图像topic<nodepkg="camera_calibration"type="cameracalibrator.py"name="camera_calibration"output="screen"args="--size 8x6 --square 0.024 image:=/usb_cam/image_raw camera:=/usb_cam"/>
</launch>

(3)编译并运行

cd ~/catkin_ws/
catkin_make --source src/robot_vision 
source devel/setup.bash
roslaunch robot_vision cameta_calibration.launch

不断晃动,直到COMMIT按键亮起,然后点击,即可生成标定文件,本人的路径为:/home/mm/.ros/camera_info/head_camera.yaml。

opencv和cv_bridge引入

(1)opencv和cv_bridge

安装opencv(ubuntu20.04+noetic):

sudo apt-get install ros-noetic-vision-opencv libopencv-dev python3-opencv

(2)opencv和cv_bridge的简单架构图如下:

根据这个图,在ros里,处理图像的流程一般是:

    # 第一步:使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式cv_image = cv_bridge.imgmsg_to_cv2(msg, "bgr8")# 第二步:使用opencv进行图像处理。。。# 第三步,再将opencv格式额数据转换成ros image格式的数据ros_image = cv_bridge.cv2_to_imgmsg(cv_image, "bgr8")

(3)在 上节的robot_vision包里,我们新增一个cv_bridge的小样例,主要功能是在捕捉到的图像上打个蓝色的圆标。

本文不深入讲解opencv,推荐一个资料:W3Cschool - OpenCV教程

cv_bridge_test.py:

#! /usr/bin/env python3
# -*- coding: utf-8 -*-
import rospy
import cv2
from functools import partial
from cv_bridge import CvBridge, CvBridgeError
from sensor_msgs.msg import Imagedef image_cb(msg, cv_bridge, image_pub):# 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式try:cv_image = cv_bridge.imgmsg_to_cv2(msg, "bgr8")except CvBridgeError as e:print(e)# 在opencv的显示窗口中绘制一个圆,作为标记# cv_image.shape返回一个元组,包含图像的行数(高度),列数(宽度)和通道数(通常是3个通道:BGR)(rows, cols, channels) = cv_image.shape# 当图像的宽度和高度都大于60时,才执行画圆标动作if cols > 60 and rows > 60:# 在计算机图像处理中,图像的原点(0,0)通常定义为图像的左上角。(60,60)是圆心的坐标。# 30是圆的半径。# (255,0,0)定义了圆的颜色。在OpenCV中,默认的颜色空间是BGR,所以这其实是绘制了一个蓝色的圆。# -1表示填充圆。如果这个值是正数,则代表绘制的圆的线宽;如果是负数,则代表填充该圆。cv2.circle(cv_image, (60,60), 30, (255,0,0), -1)# 使用Opencv的接口,显示Opencv格式的图像cv2.imshow("ycao: opencv image window", cv_image)cv2.waitKey(3)# 再将opencv格式额数据转换成ros image格式的数据发布try:image_pub.publish(cv_bridge.cv2_to_imgmsg(cv_image, "bgr8"))except CvBridgeError as e:print(e)def main():rospy.init_node("cv_bridge_test")rospy.loginfo("starting cv_bridge_test node")bridge = CvBridge()image_pub = rospy.Publisher("/cv_bridge_image", Image, queue_size=1)bind_image_cb = partial(image_cb, cv_bridge=bridge, image_pub=image_pub)// 订阅/usb_cam/image_raw,然后再回调函数里处理图像,并发布出来rospy.Subscriber("/usb_cam/image_raw", Image, bind_image_cb)rospy.spin()cv2.destroyAllWindows()
if __name__ == "__main__":main()

cv_bridge_test.launch

<launch><node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" ><param name="video_device" value="/dev/video0" /><param name="image_width" value="640" /><param name="image_height" value="480" /><param name="pixel_format" value="yuyv" /><param name="camera_frame_id" value="usb_cam" /><param name="io_method" value="mmap"/></node><nodepkg="robot_vision"type="cv_bridge_test.py"name="cv_bridge_test"output="screen"/><nodepkg="rqt_image_view"type="rqt_image_view"name="rqt_image_view"output="screen"/>
</launch>

(4)编译并运行

cd ~/catkin_ws/
catkin_make --source src/robot_vision 
source devel/setup.bash
roslaunch robot_vision cv_bridge_test.launch

总结

本文主要系统介绍了机器视觉处理的外围知识,引入了opencv和cv_bridge,后面几篇文章,我们将用它们继续丰富 robot_vision 软件包。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/70725.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

06排序 + 查找(D2_查找(D2_刷题练习))

目录 1. 二分查找-I 1.1 题目描述 1.2 解题思路 方法&#xff1a;二分法&#xff08;推荐使用&#xff09; 2. 二维数组中的查找 2.1 题目描述 2.2 解题思路 方法一&#xff1a;二分查找&#xff08;推荐使用&#xff09; 3. 寻找峰值 3.1 题目描述 3.2 解题思路 方…

防火墙综合练习2

准备阶段 实验拓扑图如下&#xff1a; 试验要求如下&#xff1a; 需求一&#xff1a;完成相关配置 需求二&#xff1a;配置DHCP协议 需求三&#xff1a;防火墙安全区域配置 需求四&#xff1a;防火墙地址组信息 需求五&#xff1a;管理员 需求六&#xff1a;用户认证…

Word中Ctrl+V粘贴报错问题

Word中CtrlV粘贴时显示“文件未找到&#xff1a;MathPage.WLL”的问题 Word的功能栏中有MathType&#xff0c;但无法使用&#xff0c;显示灰色。 解决方法如下&#xff1a; 首先找到MathType安装目录下MathPage.wll文件以及MathType Commands 2016.dotm文件&#xff0c;分别复…

什么是FPGA?

目录 一、什么是 FPGA 二、FPGA 的发展历史 三、FPGA 的基本结构 可编程逻辑单元&#xff08;CLB&#xff09; 输入输出块&#xff08;IOB&#xff09; 块随机访问存储器模块&#xff08;BRAM&#xff09; 时钟管理模块&#xff08;CMM&#xff09; 四、FPGA 的工作原理…

ESP8266配置为TCP客户端,连接电脑和手机(使用Arduino配置)

一、简介 基于 ESP8266 的 Arduino 代码&#xff0c;其主要功能是将 ESP8266 连接到指定的 Wi-Fi 网络&#xff0c;并与指定 IP 地址和端口号的服务器建立 TCP 连接。在连接成功后&#xff0c;实现了串口和网络数据的双向传输&#xff0c;也就是将从串口接收到的数据通过 Wi-Fi…

【深度学习】多目标融合算法(四):多门混合专家网络MMOE(Multi-gate Mixture-of-Experts)

目录 一、引言 二、MMoE&#xff08;Multi-gate Mixture-of-Experts&#xff0c;多门混合专家网络&#xff09; 2.1 技术原理 2.2 技术优缺点 2.3 业务代码实践 2.3.1 业务场景与建模 2.3.2 模型代码实现 2.3.3 模型训练与推理测试 2.3.4 打印模型结构 三、总结 一、…

9 数据流图

9 数据流图 9.1数据平衡原则 子图缺少处理后的数据操作结果返回前端应用以及后端数据库返回操作结果到数据管理中间件。 9.2解题技巧 实件名 存储名 加工名 数据流

Hdoop之MapReduce的原理

简单版本 AppMaster: 整个Job任务的核心协调工具 MapTask: 主要用于Map任务的执行 ReduceTask: 主要用于Reduce任务的执行 一个任务提交Job --> AppMaster(项目经理)--> 根据切片的数量统计出需要多少个MapTask任务 --> 向ResourceManager(Yarn平台的老大)索要资源 --…

Linux云计算SRE-第六周

1. 总结openssh服务安全加固和总结openssh免密认证原理&#xff0c;及免认证实现过程。 1、 openssh服务安全加固 OpenSSH&#xff08;Open Secure Shell&#xff09;服务安全加固是确保远程登录会话和其他网络服务安全性的关键步骤。以下是一些常见的OpenSSH服务安全加固措施…

Excel 笔记

实际问题记录 VBA脚本实现特殊的行转列 已知&#xff1a;位于同一Excel工作簿文件中的两个工作表&#xff1a;Sheet1、Sheet2。 问题&#xff1a;现要将Sheet2中的每一行&#xff0c;按Sheet1中的样子进行转置&#xff1a; Sheet2中每一行的黄色单元格&#xff0c;为列头。…

react使用if判断

1、第一种 function Dade(req:any){console.log(req)if(req.data.id 1){return <span>66666</span>}return <span style{{color:"red"}}>8888</span>}2、使用 {win.map((req,index) > ( <> <Dade data{req}/>{req.id 1 ?…

Java从入门到精通 第三版 读书笔记

第一章 初识Java Java同时是编译型(编译器将Java源代码静态编译为Java字节码)和解释型(JVM将Java字节码动态解释为本地机器码)语言。Java程序的运行需要解释器(如JVM)。因Java字节码本具有平台无关性,那么若要在一个新目标平台上运行一个Java程序,则仅需解释器做好目标…

【零基础学习CAPL】——Panel之弹窗的创建与使用

🙋‍♂️【零基础学习CAPL】系列💁‍♂️点击跳转 ——————————————————————————————————–—— 从0开始学习CANoe使用 从0开始学习车载测试 相信时间的力量 星光不负赶路者,时光不负有心人。 文章目录 1.概述2. panel制作2.1 panel窗体…

C# OpenCV机器视觉:对位贴合

在热闹非凡的手机维修街上&#xff0c;阿强开了一家小小的手机贴膜店。每天看着顾客们自己贴膜贴得歪歪扭扭&#xff0c;不是膜的边缘贴不整齐&#xff0c;就是里面充满了气泡&#xff0c;阿强心里就想&#xff1a;“要是我能有个自动贴膜的神器&#xff0c;那该多好啊&#xf…

推荐一个免费的、开源的大数据工程学习教程

在当今信息爆炸的时代&#xff0c;每一个企业都会产生大量的数据&#xff0c;而大数据也已经成为很多企业发展的重要驱动力&#xff0c;然而如何有效得处理和分析这些海量的数据&#xff0c;却是一个非常有挑战的技术。 今天推荐一个免费的数据工程教程&#xff0c;带你系统化…

2月10日QT

作业> 将文本编辑器功能完善 include "widget.h" #include "ui_widget.h" #include <QMessageBox> //消息对话框类 #include <QFontDialog> //字体类对话框 #include <QFont> //字体类 #include <QColorDialog> //颜…

【Java】多线程和高并发编程(四):阻塞队列(上)基础概念、ArrayBlockingQueue

文章目录 四、阻塞队列1、基础概念1.1 生产者消费者概念1.2 JUC阻塞队列的存取方法 2、ArrayBlockingQueue2.1 ArrayBlockingQueue的基本使用2.2 生产者方法实现原理2.2.1 ArrayBlockingQueue的常见属性2.2.2 add方法实现2.2.3 offer方法实现2.2.4 offer(time,unit)方法2.2.5 p…

【Java】多线程和高并发编程(三):锁(下)深入ReentrantReadWriteLock

文章目录 4、深入ReentrantReadWriteLock4.1 为什么要出现读写锁4.2 读写锁的实现原理4.3 写锁分析4.3.1 写锁加锁流程概述4.3.2 写锁加锁源码分析4.3.3 写锁释放锁流程概述&释放锁源码 4.4 读锁分析4.4.1 读锁加锁流程概述4.4.1.1 基础读锁流程4.4.1.2 读锁重入流程4.4.1.…

【R语言】相关系数

一、cor()函数 cor()函数是R语言中用于计算相关系数的函数&#xff0c;相关系数用于衡量两个变量之间的线性关系强度和方向。 常见的相关系数有皮尔逊相关系数&#xff08;Pearson correlation coefficient&#xff09;、斯皮尔曼秩相关系数&#xff08;Spearmans rank corre…

编译和链接【一】

文章目录 编译和链接【一】从翻译单元到二进制文件 编译和链接【一】 在我大一的时候&#xff0c; 我使用VC6.0对C语言程序进行编译链接和运行 &#xff0c; 然后我接触了VS&#xff0c; VS code等众多IDE&#xff0c; 这些IDE界面友好&#xff0c; 使用方便&#xff0c; 例如…