人工智能应用-智能驾驶精确的目标检测和更高级的路径规划

实现更精确的目标检测和更高级的路径规划策略是自动驾驶领域的核心任务。以下是一个简化的示例,展示如何使用Python和常见的AI库(如TensorFlow、OpenCV和A*算法)来实现这些功能。


1. 环境准备

首先,确保安装了以下库:

pip install tensorflow opencv-python numpy matplotlib

2. 目标检测(使用预训练的深度学习模型)

目标检测可以使用预训练的深度学习模型(如YOLO或SSD)来实现。以下是一个使用TensorFlow和OpenCV的示例:

import cv2
import numpy as np# 加载预训练的YOLO模型
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
with open("coco.names", "r") as f:classes = f.read().strip().split("\n")# 加载图像
image = cv2.imread("test_image.jpg")
height, width, _ = image.shape# 预处理图像
blob = cv2.dnn.blobFromImage(image, 1/255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)# 获取检测结果
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
detections = net.forward(output_layers)# 解析检测结果
for output in detections:for detection in output:scores = detection[5:]class_id = np.argmax(scores)confidence = scores[class_id]if confidence > 0.5:  # 置信度阈值center_x = int(detection[0] * width)center_y = int(detection[1] * height)w = int(detection[2] * width)h = int(detection[3] * height)# 绘制边界框x = int(center_x - w / 2)y = int(center_y - h / 2)cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2)cv2.putText(image, classes[class_id], (x, y - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)# 显示结果
cv2.imshow("Detected Objects", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

3. 路径规划(使用A*算法)

路径规划可以使用A算法来实现。以下是一个简单的A算法实现:

import heapqdef heuristic(a, b):# 曼哈顿距离作为启发式函数return abs(a[0] - b[0]) + abs(a[1] - b[1])def a_star(graph, start, goal):# 初始化优先队列frontier = []heapq.heappush(frontier, (0, start))came_from = {}cost_so_far = {}came_from[start] = Nonecost_so_far[start] = 0while frontier:_, current = heapq.heappop(frontier)if current == goal:breakfor next_node in graph.neighbors(current):new_cost = cost_so_far[current] + graph.cost(current, next_node)if next_node not in cost_so_far or new_cost < cost_so_far[next_node]:cost_so_far[next_node] = new_costpriority = new_cost + heuristic(goal, next_node)heapq.heappush(frontier, (priority, next_node))came_from[next_node] = current# 重建路径path = []current = goalwhile current != start:path.append(current)current = came_from[current]path.append(start)path.reverse()return path# 示例图类
class Graph:def __init__(self, grid):self.grid = griddef neighbors(self, node):x, y = nodeneighbors = [(x+1, y), (x-1, y), (x, y+1), (x, y-1)]  # 四连通return [n for n in neighbors if 0 <= n[0] < len(self.grid) and 0 <= n[1] < len(self.grid[0]) and self.grid[n[0]][n[1]] == 0]def cost(self, a, b):return 1  # 假设每一步的成本相同# 示例地图
grid = [[0, 1, 0, 0, 0],[0, 1, 0, 1, 0],[0, 0, 0, 1, 0],[0, 1, 1, 1, 0],[0, 0, 0, 0, 0]
]# 创建图对象
graph = Graph(grid)# 起点和终点
start = (0, 0)
goal = (4, 4)# 运行A*算法
path = a_star(graph, start, goal)
print("Path:", path)

4. 结合目标检测和路径规划

将目标检测和路径规划结合起来,可以实现更智能的自动驾驶策略。例如:

  • 检测到障碍物后,更新地图并重新规划路径。
  • 根据检测到的目标类型(如行人、车辆)调整路径规划策略。

以下是一个简单的结合示例:

# 假设检测到的障碍物位置
obstacles = [(1, 1), (1, 3), (3, 1), (3, 3)]# 更新地图
for obstacle in obstacles:grid[obstacle[0]][obstacle[1]] = 1# 重新规划路径
path = a_star(graph, start, goal)
print("Updated Path:", path)

5. 进一步优化

  • 目标检测:使用更先进的模型(如YOLOv4、YOLOv7)或自定义数据集训练模型。
  • 路径规划:引入动态障碍物处理、多目标优化(如最短路径+最小风险)。
  • 实时性:使用GPU加速目标检测和路径规划。

通过以上代码示例,你可以实现一个基本的自动驾驶系统,结合目标检测和路径规划来实现更智能的驾驶策略。实际应用中,还需要考虑传感器数据融合、实时性优化和安全性等问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/70457.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

归一化与伪彩:LabVIEW图像处理的区别

在LabVIEW的图像处理领域&#xff0c;归一化&#xff08;Normalization&#xff09;和伪彩&#xff08;Pseudo-coloring&#xff09;是两个不同的概念&#xff0c;虽然它们都涉及图像像素值的调整&#xff0c;但目的和实现方式截然不同。归一化用于调整像素值的范围&#xff0c…

MySQL8.0实现MHA高可用

一、简介 MHA&#xff08;Master HA&#xff09;是一款开源的 MySQL 的高可用程序&#xff0c;它为 MySQL 主从复制架构提供了 automating master failover 功能。MHA 在监控到 master 节点故障时&#xff0c;会提升其中拥有最新数据的 slave 节点成为新的master 节点&#xf…

记录 | WPF基础学习登录界面制作

目录 前言一、普通方式Step1 创建项目Step2 设计布局Step3 对剩余布局进行内容填充可执行代码下载 Step4 编写点击事件Step5 创建新WPF窗口Step6 简单写点Index内容Step7 跳转到Index当前代码下载 二、绑定方式绑定用户名【单向绑定】双向绑定代码提供 三、MVVM方式1&#xff1…

vivado 7 系列器件时钟

7 系列器件时钟 注释&#xff1a; 本章节以 Virtex -7 时钟源为例。 Virtex-6 的时钟资源与此类似。如果使用不同的架构&#xff0c;请参阅有关器件的 《时 钟资源指南》 [ 参照 40] 。 Virtex-6 和 Virtex-7 器件内含 32 个称为 BUFG 的全局时钟缓存。 BUFG 可满…

无须付费,安装即是完全版!

不知道大家有没有遇到过不小心删掉了电脑上超重要的文件&#xff0c;然后急得像热锅上的蚂蚁&#xff1f; 别担心&#xff0c;今天给大家带来一款超给力的数据恢复软件&#xff0c;简直就是拯救文件的“救星”&#xff01; 数据恢复 专业的恢复数据软件 这款软件的界面设计得特…

【图片合并转换PDF】如何将每个文件夹下的图片转化成PDF并合并成一个文件?下面基于C++的方式教你实现

医院在为患者进行诊断和治疗过程中&#xff0c;会产生大量的医学影像图片&#xff0c;如 X 光片、CT 扫描图、MRI 图像等。这些图片通常会按照检查时间或者检查项目存放在不同的文件夹中。为了方便医生查阅和患者病历的长期保存&#xff0c;需要将每个患者文件夹下的图片合并成…

Racecar Gym 总结

1.Racecar Gym 简介 Racecar Gym 是一个基于 PyBullet 物理引擎 的自动驾驶仿真平台&#xff0c;提供 Gymnasium&#xff08;OpenAI Gym&#xff09; 接口&#xff0c;主要用于强化学习&#xff08;Reinforcement Learning, RL&#xff09;、多智能体竞速&#xff08;Multi-Ag…

基于微信小程序的医院预约挂号系统的设计与实现

hello hello~ &#xff0c;这里是 code袁~&#x1f496;&#x1f496; &#xff0c;欢迎大家点赞&#x1f973;&#x1f973;关注&#x1f4a5;&#x1f4a5;收藏&#x1f339;&#x1f339;&#x1f339; &#x1f981;作者简介&#xff1a;一名喜欢分享和记录学习的在校大学生…

智体链:大语言模型协作完成长上下文任务

25年1月来自Penn State U和谷歌云的论文“Chain of Agents: Large Language Models Collaborating on Long-Context Tasks”。 解决有效处理长上下文的挑战已成为大语言模型 (LLM) 的关键问题。出现了两种常见策略&#xff1a;1&#xff09;减少输入长度&#xff0c;例如通过检…

java s7接收Byte字节,接收word转16位二进制

1图&#xff1a; 2.图&#xff1a; try {List list getNameList();//接收base64S7Connector s7Connector S7ConnectorFactory.buildTCPConnector().withHost("192.168.46.52").withPort(102).withTimeout(1000) //连接超时时间.withRack(0).withSlot(3).build()…

机器学习在癌症分子亚型分类中的应用

学习笔记&#xff1a;机器学习在癌症分子亚型分类中的应用——Cancer Cell 研究解析 1. 文章基本信息 标题&#xff1a;Classification of non-TCGA cancer samples to TCGA molecular subtypes using machine learning发表期刊&#xff1a;Cancer Cell发表时间&#xff1a;20…

Redis --- 使用HyperLogLog实现UV(访客量)

UV 和 PV 是网站或应用数据分析中的常用指标&#xff0c;用于衡量用户活跃度和页面访问量。 UV (Unique Visitor 独立访客)&#xff1a; 指的是在一定时间内访问过网站或应用的独立用户数量。通常根据用户的 IP 地址、Cookies 或用户 ID 等来唯一标识一个用户。示例&#xff1…

大学资产管理系统中的下载功能设计与实现

大学资产管理系统是高校信息化建设的重要组成部分&#xff0c;它负责记录和管理学校内所有固定资产的信息。随着信息技术的发展&#xff0c;下载功能成为提高资产管理效率的关键环节之一。 系统架构的设计是实现下载功能的基础。一个良好的系统架构能够确保数据的高效传输和存储…

Vue 3 中的 el-tooltip 详解:语法、示例及与其他框架对比

目录 前言1. 基本知识2. 实战Demo 前言 &#x1f91f; 找工作&#xff0c;来万码优才&#xff1a;&#x1f449; #小程序://万码优才/r6rqmzDaXpYkJZF 1. 基本知识 el-tooltip 是 Element Plus&#xff08;Vue 3 组件库&#xff09;中的一个用于提示的组件&#xff0c;它可以在…

Day 31 卡玛笔记

这是基于代码随想录的每日打卡 491. 非递减子序列 给你一个整数数组 nums &#xff0c;找出并返回所有该数组中不同的递增子序列&#xff0c;递增子序列中 至少有两个元素 。你可以按 任意顺序 返回答案。 数组中可能含有重复元素&#xff0c;如出现两个整数相等&#xff0…

docker /var/lib/docker/overlay2目录把磁盘空间占满问题

1、查看服务器磁盘空间 df -h果然100%了,docker系统文件把磁盘空间占满了。 2、进入overlay2目录&#xff0c;查找那个容器工作目录占用最高 cd /var/lib/docker/overlay2du -h --max-depth1详见下图 好家伙占用110G&#xff01;复制目录名称2c3c48ccac533c5d4a366d45a19bb9…

02vue3实战-----项目目录详解

02vue3实战-----项目目录详解 1.目录完整结构2.extensions.json文件3.node_modules文件夹4.public文件夹5.src文件夹6.文件.gitignore7.文件env.d.ts8.文件index.html9.文件package-lock.json和文件package.json10.文件README.md11.文件vite.config.ts12.文件tsconfig.json和文…

【蓝桥杯嵌入式】4_key:单击+长按+双击

全部代码网盘自取 链接&#xff1a;https://pan.baidu.com/s/1PX2NCQxnADxYBQx5CsOgPA?pwd3ii2 提取码&#xff1a;3ii2 1、电路图 将4个按键的引脚设置为input&#xff0c;并将初始状态设置为Pull-up&#xff08;上拉输入&#xff09; 为解决按键抖动的问题&#xff0c;我们…

qt部分核心机制

作业 1> 手动将登录项目实现&#xff0c;不要使用拖拽编程 并且&#xff0c;当点击登录按钮时&#xff0c;后台会判断账号和密码是否相等&#xff0c;如果相等给出登录成功的提示&#xff0c;并且关闭当前界面&#xff0c;发射一个跳转信号&#xff0c;如果登录失败&#…

Spring Boot启动内嵌tocmat原理

要研究Spring Boot启动内嵌tomcat的原理&#xff0c;就需要先了解一下Spring Boot自动配置的过程&#xff0c;首先简要的梳理一下springboot自动配置的步骤。 一、SpringBoot自动配置 当SpringBoot应用启动时&#xff0c;EnableAutoConfiguration注解被激活&#xff0c;该注解…