【论文阅读】Comment on the Security of “VOSA“

Comment on the Security of Verifiable and Oblivious Secure Aggregation for Privacy-Preserving Federated Learning -- 关于隐私保护联邦中可验证与遗忘的安全聚合的安全性

  • 论文来源
  • 摘要
  • Introduction
  • 回顾 VOSA 方案
  • 对VOSA不可伪造性的攻击
    • 对于类型 I 的攻击
    • 对于类型 II 的攻击

论文来源

名称On the Security of Verifiable and Oblivious Secure Aggregation for Privacy-Preserving Federated Learning
期刊TDSC 2024
作者Jiahui Wu; Weizhe Zhang

摘要

Recently, to resist privacy leakage and aggregation result forgery in federated learning (FL), Wang et al. proposed a verifiable and oblivious secure aggregation protocol for FL, called VOSA. They claimed that VOSA was aggregate unforgeable and verifiable under a malicious aggregation server and gave detailed security proof. In this article, we show that VOSA is insecure, in which local gradients/aggregation results and their corresponding authentication tags/proofs can be tampered with without being detected by the verifiers. After presenting specific attacks, we analyze the reason for this security issue and give a suggestion to prevent it.

最近,为了抵御联邦学习(FL)中的隐私泄露和聚合结果伪造,Wang等人提出了一种可验证且不经意的联邦学习安全聚合协议,称为VOSA。他们声称,在VOSA协议中,恶意聚合服务器是无法伪造和可验证的,并给出了详细的安全证明。本文中,我们展示了VOSA是不安全的,其中 本地梯度/聚合结果 及其对应的 认证标签/证明 可以被篡改而不被验证者检测到。在展示具体攻击之后,我们分析了此安全问题的原因,并提出了防止该问题的建议。

Introduction

  • 联邦学习(FL)是一种流行的分布式机器学习范式,它使多个用户能够在不共享其私有数据集的情况下共同训练模型。在FL中,每个用户只需提交其训练后的本地梯度到中央聚合服务器(AS)进行全局模型聚合。这样可以在利用分布式数据集的同时缓解这些数据集的隐私泄露,从而获得更准确的全局模型。然而,提交的本地梯度也泄露了数据隐私。此外,未经信任的AS可能会修改或伪造聚合结果以欺骗用户。
  • 为减轻上述两个安全问题,Wang等人最近提出了 VOSA 方案,该方案设计了一种用于联邦学习(FL)的可验证和不经意的安全聚合协议。在协议中,构建了加密方法和认证标签生成方法,以保护数据隐私并验证聚合结果的正确性。Wang等人声称,VOSA下恶意聚合服务器(AS)是不可伪造和可验证的,并给出了详细的安全性证明。不幸的是,在本文中,通过分析VOSA的安全性,我们表明它是不安全的。特别是,VOSA无法抵抗来自恶意AS的伪造攻击,我们发现AS可以伪造密文及其对应的标签,也可以伪造聚合结果及其证明,欺骗验证者(即用户)接受伪造的聚合结果。我们提出了针对VOSA的两个具体伪造攻击。在分析该安全问题的原因后,我们提供了一个建议以克服此问题。

回顾 VOSA 方案

在本节中,我们简要回顾VOSA方案。系统模型包含四个实体:密钥生成中心(KGC)、用户、收集器和聚合服务器(AS)。在威胁模型中,恶意的AS可能会篡改或伪造聚合结果和证明,以欺骗用户接受不正确的结果。下面,我们描述包含五个阶段的 VOSA 详细协议。

  • 阶段 0:建立阶段:KGC 生成并发布公共系统参数 p m = { N , w 0 , g 1 , g 2 , h 1 , h 2 , G 1 , G 2 , G T , H 0 , H 1 } pm = \{N, w_0, g_1, g_2, h_1, h_2, G_1, G_2, G_T, H_0, H_1\} pm={N,w0,g1,g2,h1,h2,G1,G2,GT,H0,H1},其中 N = p q N = pq N=pq p p p q q q 是两个安全的大素数; w 0 w_0 w0 是初始模型参数; G 1 G_1 G1, G 2 G_2 G2 是两个素数阶为 p p p 的乘法循环群; g 1 g_1 g1, g 2 g_2 g2 分别是 G 1 G_1 G1, G 2 G_2 G2 的两个随机生成元; h 1 = g 1 a , h 2 = g 2 a , a ∈ Z p ∗ h_1 = g_1^a, h_2 = g_2^a, a \in Z_p^∗ h1=g1a,h2=g2a,aZp e : G 1 × G 2 → G T e : G_1 × G_2 \to G_T e:G1×G2GT 是一个可计算的双线性对; H 0 : { 0 , 1 } ∗ → Z N 2 ∗ H_0 : \{0, 1\}^∗ \to Z_{N^2}^∗ H0:{0,1}ZN2 H 1 : { 0 , 1 } ∗ → G 1 H_1 : \{0, 1\}^∗ \to G_1 H1:{0,1}G1 是两个哈希函数。AS 生成其秘密钥匙 s k A ∈ Z N 2 ∗ sk_A \in Z_{N^2}^∗ skAZN2 。每个用户 U i \mathcal{U}_i Ui 生成其加密钥匙 s k i ∈ [ 0 , N 2 ] sk_i ∈ [0, N^2] ski[0,N2] 和标签钥匙 t k i ∈ Z N 2 ∗ tk_i \in Z_{N^2}^∗ tkiZN2
  • 阶段 1:掩码和标签阶段:在第 t t t 次训练周期, U i \mathcal{U}_i Ui 将其本地梯度 w i , t w_{i,t} wi,t 加密为密文 C i , t = ( 1 + w i , t N ) H 0 ( t ) s k i m o d N 2 C_{i,t} = (1 + w_{i,t} N )H_0(t)^{sk_i} \ mod \ N^2 Ci,t=(1+wi,tN)H0(t)ski mod N2,并生成认证标签 T i , t = H 1 ( t ) t k i h 1 w i , t T_{i,t} = H_1(t)^{tk_i} h_1^{w_{i,t}} Ti,t=H1(t)tkih1wi,t 。然后 U i \mathcal{U}_i Ui ( C i , t , T i , t ) (C_{i,t}, T_{i,t}) (Ci,t,Ti,t) 发送到 AS 。
  • 阶段2:收集阶段:AS生成其公钥 p k A , t = ( p k A , t 1 , p k A , t 2 ) pk_{A,t} = (pk_{A,t}^1, pk_{A,t}^2) pkA,t=(pkA,t1,pkA,t2) 并将其分发给所有用户 U i ∈ U 1 \mathcal{U}_i \in \mathcal{U}_1 UiU1,其中 p k A , t 1 = H 0 ( t ) s k A pk_{A,t}^1 = H_0(t)^{sk_A} pkA,t1=H0(t)skA p k A , t 2 = h 2 s k A pk_{A,t}^2 = h_2^{sk_A} pkA,t2=h2skA U 1 \mathcal{U}_1 U1 包含所有将密文和标签发送给 AS 的用户。然后, U i \mathcal{U}_i Ui 生成其辅助信息 A u i , t = ( p k A , t 1 ) s k i , V k i , t = ( p k A , t 2 ) t k i Au_{i,t} = (pk_{A,t}^1)^{sk_i},Vk_{i,t} = (pk_{A,t}^2)^{tk_i} Aui,t=(pkA,t1)skiVki,t=(pkA,t2)tki 并将其发送给收集器。收集器构建用户列表 U 3 = U 1 ∩ U 2 \mathcal{U}_3 = \mathcal{U}_1 \cap \ \mathcal{U}_2 U3=U1 U2 U 2 \mathcal{U}_2 U2 包含所有将辅助信息发送给收集器的用户)并计算解密密钥 A u t = ∏ U i ∈ U 3 A u i , t Au_t = \prod_{\mathcal{U}_i \in \mathcal{U}_3} Au_{i,t} Aut=UiU3Aui,t 和验证密钥 V k t = ∏ U i ∈ U 3 V k i , t Vk_t = \prod_{\mathcal{U}_i \in \mathcal{U}_3} Vk_{i,t} Vkt=UiU3Vki,t 。最后,收集器将 A u t , U 3 Au_t, \mathcal{U}_3 Aut,U3 发送给AS,并将 V k t Vk_t Vkt 发送给 U 3 \mathcal{U}_3 U3 中的所有用户。
  • 第3阶段:解密和聚合阶段:AS将 U 3 \mathcal{U}_3 U3 中所有用户的密文聚合为聚合密文 C t = ( ∏ U i ∈ U 3 C i , t ) s k A m o d N 2 C_t = (\prod_{\mathcal{U}_i \in \mathcal{U}_3} Ci,t)^{sk_A} \ mod \ N^2 Ct=(UiU3Ci,t)skA mod N2,然后将其解密为聚合明文 W t = s k A − 1 C t A u t − 1 N m o d N W_t = sk_A^{−1 } \frac{\frac{C_t}{Au_t}-1}{N} \ mod \ N Wt=skA1NAutCt1 mod N 。AS 将所有认证标签聚合为证明 T t = ( ∏ U i ∈ U 3 T i , t ) s k A Tt = (\prod_{\mathcal{U}_i \in \mathcal{U}_3} T_{i,t})^{sk_A} Tt=(UiU3Ti,t)skA,并将 ( W t , T t ) (W_t, T_t) (Wt,Tt) 发送给 U 3 \mathcal{U}_3 U3 中的所有用户。
  • 第4阶段:验证阶段:每个用户通过检查 e ( T t , h 2 ) = ? e ( H 1 ( t ) , V k t ) ⋅ e ( h 1 W t , p k A , t 2 ) e(T_t, h_2) \stackrel{\text{\tiny ?}}{=} e(H_1(t), Vk_t) \cdot e(h_1^{W_t} , pk_{A,t}^2) e(Tt,h2)=?e(H1(t),Vkt)e(h1Wt,pkA,t2) 来验证聚合明文的正确性。如果等式成立,那么 W t W_t Wt 是正确的聚合明文;否则,它是不正确的。

对VOSA不可伪造性的攻击

在VOSA中,Wang等人声称VOSA实现了聚合的不可伪造性和可验证性,以抵御恶意的AS发起 篡改 / 伪造攻击 ,欺骗用户接受错误的聚合结果。

然而,我们发现它不能抵抗两种类型的伪造攻击:

  • 类型 I:AS 篡改任意用户的密文 / 标签对,并欺骗所有用户接受聚合结果。
  • 类型 II:AS 篡改聚合结果及其证明,以欺骗所有用户接受篡改后的聚合结果。

我们在下面提供详细的攻击情况。

对于类型 I 的攻击

AS 首先篡改了任意用户 U i ∈ U 3 \mathcal{U}_i \in \mathcal{U}_3 UiU3 的密文/标签对,如下所示:

  • AS 计算 ( 1 + w i , t ′ N , h 1 w i , t ′ ) (1+w_{i,t}'N , h_1^{w_{i,t}'}) (1+wi,tN,h1wi,t) ,其中 w i , t ′ w_{i,t}' wi,t 是 AS 任意伪造的梯度。
  • AS篡改了 U i \mathcal{U}_i Ui 的密文/标签对 ( C i , t , T i , t ) (C_{i,t}, T_{i,t}) (Ci,t,Ti,t) 为篡改后的密文/标签对。

在这里插入图片描述

其中 w i , t ∗ = w i , t + w i , t ′ w_{i,t}^* = w_{i,t} + w_{i,t}' wi,t=wi,t+wi,t 是被篡改的梯度。记 U ∗ ( U ∗ ⊆ U 3 ) \mathcal{U}^∗ (\mathcal{U}^∗ ⊆ \mathcal{U}_3) U(UU3) 为其密文/标签对被 AS 篡改的用户列表。为了便于后续的呈现,我们将 U j ∈ U 3 ∖ U ∗ \mathcal{U}_j \in \mathcal{U}_3 \setminus \mathcal{U}^∗ UjU3U 的梯度表示为 w j , t ∗ = w j , t w_{j,t}^* = w_{j,t} wj,t=wj,t

然后,AS 将所有 U 3 \mathcal{U}_3 U3 用户的密文聚合为伪造的聚合密文 C t ∗ C_t^∗ Ct 如(1),并使用去伪装密钥 A u t Au_t Aut 和其私钥 s k A sk_A skA 解密 C t ∗ C_t^∗ Ct 以获得伪造的聚合明文 W t ∗ W_t^∗ Wt 如(2)。AS 计算伪造的聚合标签 T t ∗ T_t^∗ Tt 如(3)。然后 AS 将 ( W t ∗ , T t ∗ ) (W_t^∗, T_t^∗) (Wt,Tt) 发送给 U 3 \mathcal{U}_3 U3 中的所有用户以进行验证。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在接收到伪造的聚合值 ( W t ∗ , T t ∗ ) (W_t^∗, T_t^∗) (Wt,Tt) 时,每个用户通过检查验证 W t ∗ W_t^∗ Wt 的正确性:
在这里插入图片描述
根据双线性配对性质,(4) 的左侧等于(4)的右侧。然后, W t ∗ W_t^∗ Wt 被验证为正确,因此 VOSA 无法抵抗 I 型伪造攻击。
在这里插入图片描述

对于类型 II 的攻击

AS 先在 W t W_t Wt 的基础上伪造一个聚合明文 W t ∗ = W t + w ∗ W_t^∗ = W_t + w^∗ Wt=Wt+w,其中 w ∗ w^∗ w 是一个随机选择的梯度。 然后,AS 修改 W t W_t Wt 的证明 T t T_t Tt 为证明 T t ∗ = T t ⋅ h 1 w ∗ s k A T_t^∗ = T_t \cdot \ h_1^{w^∗sk_A} Tt=Tt h1wskA 。 最后,AS 将 ( W t ∗ , T t ∗ ) (W_t^∗, T_t^∗) (Wt,Tt) 发送给用户进行验证。 在验证阶段,每个用户验证:
在这里插入图片描述
因此,VOSA 无法抵抗 II 型伪造攻击。

讨论:我们攻击的主要原因是VOSA的加密 / 认证标签生成方法使得密文 / 标签可以轻易地被恶意对手篡改,而不需要用户的加密 / 标签密钥。更明确地说,在密文和标签时,用户密钥不会直接影响明文。具体,一个密文 C i , t = ( 1 + w i , t N ) H 0 ( t ) s k i m o d N 2 C_{i,t} = (1 + w_{i,t}N )H_0(t)^{sk_i} \ mod \ N^2 Ci,t=(1+wi,tN)H0(t)ski mod N2 / 标签 T i , t = H 1 ( t ) t k i h 1 w i , t T_{i,t} = H_1(t)^{tk_i} h_1^{w_{i,t}} Ti,t=H1(t)tkih1wi,t 可以被视为由两个独立部分组成: { C i , t ( 1 ) , C i , t ( 2 ) = { ( 1 + w i , t N ) , H 0 ( t ) s k i } / { T i , t ( 1 ) , T i , t ( 2 ) } = { h 1 w i , t , H 1 ( t ) t k i } \{C_{i,t}^{(1)} , C_{i,t}^{(2)} = \{(1 + w_{i,t}N ), H_0(t)^{sk_i} \} / \{T_{i,t}^{(1)} , T_{i,t}^{(2)} \} = \{h_1^{w_{i,t}} ,H_1(t)^{tk_i}\} {Ci,t(1),Ci,t(2)={(1+wi,tN),H0(t)ski}/{Ti,t(1),Ti,t(2)}={h1wi,t,H1(t)tki},密文 / 标签的两个部分分别包含明文 w i , t w_{i,t} wi,t 和密钥 s k i / t k i sk_i/tk_i ski/tki ,从而使我们可以在篡改包含明文的部分(即 C i , t ( 1 ) / T i , t ( 1 ) C_{i,t}^{(1)} / T_{i,t}^{(1)} Ci,t(1)/Ti,t(1))时进行攻击。

虽然我们的攻击可以通过将用户密钥放在部分 C i , t ( 1 ) C_{i,t}^{(1)} Ci,t(1) T i , t ( 1 ) T_{i,t}^{(1)} Ti,t(1) 上来防止,但我们强调此方法对于VOSA来说难以维持解密的正确性。例如,我们将加密方法修改为 C i , t ~ = ( 1 + w i , t N ) s k i H 0 ( t ) s k i m o d N 2 \tilde{C_{i,t}} = (1 + w_{i,t}N )^{sk_i} H_0(t)^{sk_i} \ mod \ N^2 Ci,t~=(1+wi,tN)skiH0(t)ski mod N2,那么聚合密文是 C t ~ = ( ∏ U i ∈ U 3 C i , t ~ ) s k A m o d N 2 = ( 1 + s k A ∑ U i ∈ U 3 s k i w i , t N ) H 0 ( t ) s k A ∑ U i ∈ U 3 s k i m o d N 2 \tilde{C_t} = (\prod_{\mathcal{U}_i \in \mathcal{U}_3}\tilde{C_{i,t}})^{sk_A} \ mod \ N^2 = (1+sk_A\sum_{\mathcal{U}_i \in \mathcal{U}_3}sk_i w_{i,t}N)H_0(t)^{sk_A\sum_{\mathcal{U}_i \in \mathcal{U}_3}sk_i} \ mod \ N^2 Ct~=(UiU3Ci,t~)skA mod N2=(1+skAUiU3skiwi,tN)H0(t)skAUiU3ski mod N2 ,并且其解密结果为 W t ~ = s k A − 1 C ~ A u t − 1 N m o d N = ∑ U i ∈ U 3 s k i w i , t m o d N ≠ ∑ U i ∈ U 3 w i , t m o d N \tilde{W_t} = sk_A^{-1} \frac{\frac{\tilde{C}}{Au_t}-1}{N}\ mod \ N =\sum_{\mathcal{U}_i \in \mathcal{U}_3}sk_i w_{i,t} \ mod \ N \neq \sum_{\mathcal{U}_i \in \mathcal{U}_3}w_{i,t} \ mod \ N Wt~=skA1NAutC~1 mod N=UiU3skiwi,t mod N=UiU3wi,t mod N。也就是说,解密结果不正确。

上述方法不可行,主要是因为用户自己生成的密钥彼此不同,因此这些密钥在解密时无法去除。因此,我们建议 可信的KGC生成一个相同的共享密钥 s s s ,并将其分享给所有用户。然后, U i \mathcal{U}_i Ui 进行加密、标签生成和解密操作,分别为: C i , t = ( 1 + w i , t N ) s H 0 ( t ) s k i m o d N 2 C_{i,t} = (1 + w_{i,t}N)^sH_0(t)^{sk_i} \ mod \ N^2 Ci,t=(1+wi,tN)sH0(t)ski mod N2 , T i , t = H 1 ( t ) t k i h 1 w i , t s T_{i,t} = H_1(t)^{tk_i} h_1^{w_{i,t}s} Ti,t=H1(t)tkih1wi,ts , 和 W t ~ = s k A − 1 C ~ A u t − 1 N s m o d N \tilde{W_t} = sk_A^{-1} \frac{\frac{\tilde{C}}{Au_t}-1}{Ns}\ mod \ N Wt~=skA1NsAutC~1 mod N。我们提醒,这种方法要求AS不与任何用户串通;否则,AS知道 s s s 后仍可发起我们的伪造攻击。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/70424.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

idea隐藏无关文件

idea隐藏无关文件 如果你想隐藏某些特定类型的文件(例如 .log 文件或 .tmp 文件),可以通过以下步骤设置: 打开设置 在菜单栏中选择 File > Settings(Windows/Linux)或 IntelliJ IDEA > Preference…

x64、aarch64、arm与RISC-V64:详解四种处理器架构

x64、aarch64、arm与RISC-V64:详解四种处理器架构 x64架构aarch64架构ARM架构RISC-V64架构总结与展望在计算机科学领域,处理器架构是构建计算机系统的基石,它决定了计算机如何执行指令、管理内存和处理数据。x64、aarch64、arm与RISC-V64是当前主流的四种处理器架构,它们在…

区块链技术:Facebook 重塑社交媒体信任的新篇章

在这个信息爆炸的时代,社交媒体已经成为我们生活中不可或缺的一部分。然而,随着社交平台的快速发展,隐私泄露、数据滥用和虚假信息等问题也日益凸显。这些问题的核心在于传统社交媒体依赖于中心化服务器存储和管理用户数据,这种模…

Redis数据库篇 -- Pipeline

一. 什么是Pipeline 在传统的请求-响应模式中,客户端与服务器之间的通信流程如下: 客户端发送一个命令到服务器。服务器接收命令并执行。服务器将执行结果返回给客户端。客户端接收结果后,发送下一个命令 在这种传统的模式下,…

[权限提升] Linux 提权 维持 — 系统错误配置提权 - 计划任务提权

关注这个专栏的其他相关笔记:[内网安全] 内网渗透 - 学习手册-CSDN博客 0x01:Linux 计划任务提权原理 Linux 计划任务提权是由于管理员配置不当,导致以 Root 权限运行的计划任务文件可以被低权限用户修改,从而被攻击者利用&#…

GB/T 43698-2024 《网络安全技术 软件供应链安全要求》标准解读

一、43698-2024标准图解 https://mmbiz.qpic.cn/sz_mmbiz_png/rwcfRwCticvgeBPR8TWIPywUP8nGp4IMFwwrxAHMZ9Enfp3wibNxnfichT5zs7rh2FxTZWMxz0je9TZSqQ0lNZ7lQ/640?wx_fmtpng&fromappmsg 标准在线预览: 国家标准|GB/T 43698-2024 相关标准: &a…

记一次golang环境的变化

前两天编译打包了了个文件,把env的 goos 搞坏了 导致运行项目一直报错 先是这样 go: unsupported GOOS/GOARCH pair windows/amd64再是这样 /amd64supported GOOS/GOARCH pair linux咱就说,咱也是知道环境配置的有问题 ( go env GOOS &…

QT笔记——多语言翻译

文章目录 1、概要2、多语言切换2.1、结果展示2.2、创建项目2.2、绘制UI2.2、生成“.st”文件2.4、生成“.qm”文件2.5、工程demo 1、概要 借助QT自带的翻译功能,实现实际应用用进行 “多语言切换” 2、多语言切换 2.1、结果展示 多语言切换 2.2、创建项目 1、文件…

【鸿蒙HarmonyOS Next实战开发】实现ArkTS/JS和C/C++的交互-Node-API

一、HarmonyOS Node-API简介 在HarmonyOS应用开发中,通常以ArkTS/JS语言为主,但在一些特殊场景下,例如游戏开发、物理模拟等,由于对性能、效率等有较高要求,需要借助现有的C/C库来实现。为了满足这种需求,…

mac环境下,ollama+deepseek+cherry studio+chatbox本地部署

春节期间,deepseek迅速火爆全网,然后回来上班,我就浅浅的学习一下,然后这里总结一下,我学习中,总结的一些知识点吧,分享给大家。具体的深度安装部署,这里不做赘述,因为网…

深度学习01 神经网络

目录 神经网络 ​感知器 感知器的定义 感知器的数学表达 感知器的局限性 多层感知器(MLP, Multi-Layer Perceptron) 多层感知器的定义 多层感知器的结构 多层感知器的优势 偏置 偏置的作用 偏置的数学表达 神经网络的构造 ​神经网络的基本…

电脑右下角小喇叭没反应怎么回事,快速解决方案

当电脑右下角的小喇叭(音量图标)没有反应时,可以尝试以下快速解决方案: 一、基础检查与操作 检查键盘音量键: 按下键盘上的音量增加或减少键,或尝试Fn音量键(部分笔记本需组合键)&a…

P3654 First Step (ファーストステップ)(贪心算法)

#include<bits/stdc.h> using namespace std;int main() {int r,c,k;cin>>r>>c>>k;char a[105][105];int ans0;for(int i0;i<r;i){for(int j0;j<c;j){cin>>a[i][j];}}for(int i0;i<r;i){int cnt0; // 用来记录连续空地的数量for(int j…

ASP.NET Core对JWT的封装

目录 JWT封装 [Authorize]的注意事项 JWT封装 NuGet 库 |Microsoft.AspNetCore.Authentication.JwtBearer 9.0.1https://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.JwtBearerhttps://www.nuget.org/packages/Microsoft.AspNetCore.Authentication.JwtBea…

【热点文章-定时计算】分布式任务调度框架xxl-job

分布式任务调度 在分布式架构下&#xff0c;一个服务会部署多个实例来运行业务&#xff1b;如果在这种分布式系统环境下运行任务调度&#xff0c;称为分布式任务调度。 分布式任务调度框架&#xff1a;xxl-job xxl-job环境搭建 本机 仓库源码&#xff1a;xxl-job 初始化…

嵌入式面试题 C/C++常见面试题整理_7

一.什么函数不能声明为虚函数? 常见的不能声明为虚函数的有:普通函数(非成员函数):静态成员函数;内联成员函数;构造函数;友元函数。 1.为什么C不支持普通函数为虚函数?普通函数(非成员函数)只能被overload&#xff0c;不能被override&#xff0c;声明为虚函数也没有什么意思…

【MySQL】深入了解索引背后的内部结构

目录 索引的认识&#xff1a; 作用&#xff1a; 索引的使用&#xff1a; 索引底层的数据结构&#xff1a; 哈希表 AVL树 红黑树 B树&#xff1a; B树&#xff1a; B树搜索&#xff1a; 索引的认识&#xff1a; 索引是数据库中的一个数据结构&#xff0c;用于加速查询…

最新版Node.js下载安装指定版本图文版教程(非常详细)

文字目录 1、什么是Node.js&#xff1f;2、什么是 npm&#xff1f;3、下载Node.js安装包4、详细安装步骤 1、什么是Node.js&#xff1f; Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境&#xff0c;它使 JavaScript 可以在服务器端运行。在 Node.js 出现之前&#…

Spring Boot Web 入门

目录 Spring Boot Web 是 Spring Boot 框架的一个重要模块&#xff0c;它简化了基于 Spring 的 Web 应用程序的开发过程。以下是一个 Spring Boot Web 项目的入门指南&#xff0c;涵盖了项目创建、代码编写、运行等关键步骤。 1. 项目创建 使用 Spring Initializr 使用 IDE …

深度解读 Docker Swarm

一、引言 随着业务规模的不断扩大和应用复杂度的增加,容器集群管理的需求应运而生。如何有效地管理和调度大量的容器,确保应用的高可用性、弹性伸缩和资源的合理分配,成为了亟待解决的问题。Docker Swarm 作为 Docker 官方推出的容器集群管理工具,正是在这样的背景下崭露头…