2025.1.26机器学习笔记:C-RNN-GAN文献阅读

2025.1.26周报

  • 文献阅读
    • 题目信息
    • 摘要
    • Abstract
    • 创新点
    • 网络架构
    • 实验
    • 结论
    • 缺点以及后续展望
  • 总结

文献阅读

题目信息

  • 题目: C-RNN-GAN: Continuous recurrent neural networks with adversarial training
  • 会议期刊: NIPS
  • 作者: Olof Mogren
  • 发表时间: 2016
  • 文章链接:https://arxiv.org/pdf/1611.09904

摘要

生成对抗网络(GANs)目的是生成数据,而循环神经网络(RNNs)常用于生成数据序列。目前已有研究用RNN进行音乐生成,但多使用符号表示。本论文中,作者研究了使用对抗训练生成连续数据的序列可行性,并使用古典音乐的midi文件进行评估。作者提出C-RNN-GAN(连续循环生成对抗网络)这种神经网络架构,用对抗训练来对序列的整体联合概率建模并生成高质量的数据序列。通过在古典音乐midi格式序列上训练该模型,并用音阶一致性和音域等指标进行评估,以验证生成对抗训练是一种可行的训练网络的方法,提出的模型为连续数据的生成提供了新思路。

Abstract

The purpose of Generative Adversarial Networks (GANs) is to generate data, while Recurrent Neural Networks (RNNs) are often used for generating data sequences. Currently, there have been many studies using RNNs for music generation, but most of them employ symbolic representations. In this paper, the authors investigate the feasibility of using adversarial training to generate sequences of continuous data, and evaluate it using classical music MIDI files. They propose the C-RNN-GAN (Continuous Recurrent Neural Network GAN), a neural network architecture that uses adversarial training to model the joint probability of the entire sequence and generate high-quality data sequences. By training this model on classical music MIDI format sequences and assessing it with metrics such as scale consistency and range, the authors demonstrate that adversarial training is a viable method for training networks, and the proposed model offers a new approach for the generation of continuous data.

创新点

本研究创新性在于提出C-RNN-GAN模型,作者采用对抗训练方式处理连续序列数据。作者使用四个实值标量对音乐信号进行生成,此外,还使用了反向传播算法进行端到端训练。

网络架构

提出C-RNN-GAN模型,RNN-GAN 由生成器(Generator)和判别器(Discriminator)两个主要部分组成。
如下图所示:
生成器(G)从随机输入(噪声)生成音乐序列。其包含LSTM层和全连接层。输入为随机噪声输入(如,随机向量);输出是生成的音乐序列。
判别器(D)用于区分生成的音乐序列和真实音乐序列。D由Bi-LSTM(双向长短期记忆网络)组成。输入为真实或生成的音乐序列;输出为一个概率值(表示输入序列是真实音乐的概率)。
在训练中,G与D相互对抗,生成器和判别器交替训练,生成器的目标是欺骗判别器,判别器的目标是准确区分真实和生成的音乐。
在这里插入图片描述
其中G与D的损失函数表达式如下:
L G = 1 m ∑ i = 1 m log ⁡ ( 1 − D ( G ( z ( i ) ) ) ) L_{G}=\frac{1}{m} \sum_{i=1}^{m} \log \left(1-D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right) LG=m1i=1mlog(1D(G(z(i))))
L D = 1 m ∑ i = 1 m [ − log ⁡ D ( x ( i ) ) − ( log ⁡ ( 1 − D ( G ( z ( i ) ) ) ) ) ] L_{D}=\frac{1}{m} \sum_{i=1}^{m}\left[-\log D\left(\boldsymbol{x}^{(i)}\right)-\left(\log \left(1-D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right)\right)\right] LD=m1i=1m[logD(x(i))(log(1D(G(z(i)))))]
其中, z ( i ) z^{(i)} z(i) [ 0 , 1 ] k [0,1]^{k} [0,1]k 中的均匀随机向量的序列,而 x ( i ) x^(i) x(i) 是来自训练数据的序列,k 表示随机序列中的数据的维数。G 中每个单元格的输入是一个随机向量,与先前单元格的输出串联。.
其实就跟我们之前阅读的GAN差不多,这里就不在赘述了。

实验

从网络收集midi格式的古典音乐文件作为训练数据,训练数据是以midi格式的音乐文件形式从网上收集的,包含着名的古典音乐作品。 每个midi事件被加载并与其持续时间,音调,强度(速度)以及自上一音调开始以来的时间一起保存。音调数据在内部用相应的声音频率表示。所有数据归一化为每秒384点的刻度分辨率。 该数据包含来自160位不同古典音乐作曲家的3697个m​​idi文件,最后作者通过多维度指标评估生成音乐。

实验的模型评估指标:
Polyphony(复音):衡量两个音调同时演奏的频率。
Scale consistency(音阶一致性):通过计算属于标准音阶的音调比例得出,报告最匹配音阶的数值。
Repetitions (重复度):计算样本中的重复程度,仅考虑音调及其顺序,不考虑时间。
Tone span(音域):样本中最低和最高音调之间的半音步数。

模型参数:
生成器(G)和判别器(D)中的LSTM网络深度都为2,每个LSTM单元具有350个隐藏单元。
D双向的,而G是单向的。其中,来自D中的每个LSTM单元的输出被馈送到完全连接的层,其中权重在时间步长上共享,然后每个单元的sigmoid输出被平均化。
此外,在训练中使用反向传播(BPTT)和小批量随机梯度下降。学习率设置为0.1,并且将L2正则化应用于G和D中的权重。模型预训练6个epochs,平方误差损失以预测训练序列中的下一个事件。每个LSTM单元的输入是随机向量v,与前一时间步的输出连接。 v均匀分布在 [ 0 , 1 ] k [0,1]^k [0,1]k 中,并且k被选择为每个音调中的特征数量。在预训练期间,作者使用序列长度的模式,从短序列开始,从训练数据中随机样,最终用越来越长的序列训练模型。

实验结果:
C-RNN-GAN随着训练进行,生成音乐的复杂性增加。独特音调数量有微弱上升趋势,音阶一致性在10-15个周期后趋于稳定。
3音调重复在前25个周期有上升趋势,然后保持在较低水平,其与使用的音调数量相关。
在这里插入图片描述
Baseline(一个类似于生成器的循环网络)变化程度未达到C-RNN-GAN的水平。使用的独特音调数量一直低很多,音阶一致性与C-RNN-GAN相似,但音域与独特音调数量的关系比C-RNN-GAN更紧密,表明其使用的音调变化性更小。
在这里插入图片描述
C-RNN-GAN-3(3的意思是每个LSTM单元三个音调输出)与C-RNN-GAN和Baseline模型相比,获得了更高的复音分数。
在第50 - 55个周期左右达到许多零值输出状态后,在音域、独特音调数量、强度范围和3音调重复方面达到了更高的值。
在这里插入图片描述
真实音乐强度范围与生成音乐相似,音阶一致性略高但变化更大,复音分数与C-RNN-GAN-3相似,3音调重复高很多,但由于歌曲长度不同难以比较(通过除以真实音乐长度与生成音乐长度之比进行了归一化)。
在这里插入图片描述
从实验结果可以看出对抗训练有助于模型学习更多变、音域更广、强度范围更大的音乐。其中,模型每个LSTM单元输出多于一个音调有助于生成复音分数更高的音乐。虽然生成音乐是复音的,但在实验评估的复音分数方面,C-RNN-GAN得分较低,而允许每个LSTM单元同时输出多达三个音调的模型(C-RNN-GAN-3)在复音方面得分更好。虽然样本之间的时间差异较大,但在一首曲子内大致相同。
代码:https://github.com/olofmogren/c-rnn-gan


"""
模型参数:
learning_rate - 学习率的初始值
max_grad_norm - 梯度的最大允许范数
num_layers - LSTM 层的数量
songlength - LSTM 展开的步数
hidden_size - LSTM 单元的数量
epochs_before_decay - 使用初始学习率训练的轮数
max_epoch - 训练的总轮数
keep_prob - Dropout 层中保留权重的概率
lr_decay - 在 "epochs_before_decay" 之后每个轮数的学习率衰减
batch_size - 批量大小
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport time, datetime, os, sys
import pickle as pkl
from subprocess import call, Popenimport numpy as np
import tensorflow as tf
from tensorflow.python.client import timelineimport music_data_utils
from midi_statistics import get_all_statsflags = tf.flags
logging = tf.loggingflags.DEFINE_string("datadir", None, "保存和加载 MIDI 音乐文件的目录")
flags.DEFINE_string("traindir", None, "保存检查点和 gnuplot 文件的目录")
flags.DEFINE_integer("epochs_per_checkpoint", 2, "每个检查点之间进行的训练轮数")
flags.DEFINE_boolean("log_device_placement", False, "输出设备放置的信息")
flags.DEFINE_string("call_after", None, "退出后调用的命令")
flags.DEFINE_integer("exit_after", 1440, "运行多少分钟后退出")
flags.DEFINE_integer("select_validation_percentage", None, "选择作为验证集的数据的随机百分比")
flags.DEFINE_integer("select_test_percentage", None, "选择作为测试集的数据的随机百分比")
flags.DEFINE_boolean("sample", False, "从模型中采样输出。假设训练已经完成。将采样输出保存到文件中")
flags.DEFINE_integer("works_per_composer", None, "限制每个作曲家加载的作品数量")
flags.DEFINE_boolean("disable_feed_previous", False, "在生成器中,将前一个单元的输出作为下一个单元的输入")
flags.DEFINE_float("init_scale", 0.05, "权重的初始缩放值")
flags.DEFINE_float("learning_rate", 0.1, "学习率")
flags.DEFINE_float("d_lr_factor", 0.5, "学习率衰减因子")
flags.DEFINE_float("max_grad_norm", 5.0, "梯度的最大允许范数")
flags.DEFINE_float("keep_prob", 0.5, "保留权重的概率。1表示不使用 Dropout")
flags.DEFINE_float("lr_decay", 1.0, "在 'epochs_before_decay' 之后每个轮数的学习率衰减")
flags.DEFINE_integer("num_layers_g", 2, "生成器 G 中堆叠的循环单元数量")
flags.DEFINE_integer("num_layers_d", 2, "判别器 D 中堆叠的循环单元数量")
flags.DEFINE_integer("songlength", 100, "限制歌曲输入的事件数量")
flags.DEFINE_integer("meta_layer_size", 200, "元信息模块的隐藏层大小")
flags.DEFINE_integer("hidden_size_g", 100, "生成器 G 的循环部分的隐藏层大小")
flags.DEFINE_integer("hidden_size_d", 100, "判别器 D 的循环部分的隐藏层大小,默认与 G 相同")
flags.DEFINE_integer("epochs_before_decay", 60, "开始衰减之前进行的轮数")
flags.DEFINE_integer("max_epoch", 500, "停止训练之前的总轮数")
flags.DEFINE_integer("batch_size", 20, "批量大小")
flags.DEFINE_integer("biscale_slow_layer_ticks", 8, "Biscale 慢层的刻度")
flags.DEFINE_boolean("multiscale", False, "多尺度 RNN")
flags.DEFINE_integer("pretraining_epochs", 6, "进行语言模型风格预训练的轮数")
flags.DEFINE_boolean("pretraining_d", False, "在预训练期间训练 D")
flags.DEFINE_boolean("initialize_d", False, "初始化 D 的变量,无论检查点中是否有已训练的版本")
flags.DEFINE_boolean("ignore_saved_args", False, "告诉程序忽略已保存的参数,而是使用命令行参数")
flags.DEFINE_boolean("pace_events", False, "在解析输入数据时,如果某个四分音符位置没有音符,则插入一个虚拟事件")
flags.DEFINE_boolean("minibatch_d", False, "为小批量增加核特征以提高多样性")
flags.DEFINE_boolean("unidirectional_d", False, "使用单向 RNN 而不是双向 RNN 作为 D")
flags.DEFINE_boolean("profiling", False, "性能分析。在 plots 目录中写入 timeline.json 文件")
flags.DEFINE_boolean("float16", False, "使用 float16 数据类型,否则,使用 float32")
flags.DEFINE_boolean("adam", False, "使用 Adam 优化器")
flags.DEFINE_boolean("feature_matching", False, "生成器 G 的特征匹配目标")
flags.DEFINE_boolean("disable_l2_regularizer", False, "对权重进行 L2 正则化")
flags.DEFINE_float("reg_scale", 1.0, "L2 正则化系数")
flags.DEFINE_boolean("synthetic_chords", False, "使用合成生成的和弦进行训练(每个事件三个音符)")
flags.DEFINE_integer("tones_per_cell", 1, "每个 RNN 单元输出的最大音符数量")
flags.DEFINE_string("composer", None, "指定一个作曲家,并仅在此作曲家的作品上训练模型")
flags.DEFINE_boolean("generate_meta", False, "将作曲家和流派作为输出的一部分生成")
flags.DEFINE_float("random_input_scale", 1.0, "随机输入的缩放比例(1表示与生成的特征大小相同)")
flags.DEFINE_boolean("end_classification", False, "仅在 D 的末尾进行分类。否则,在每个时间步进行分类并取平均值")FLAGS = flags.FLAGSmodel_layout_flags = ['num_layers_g', 'num_layers_d', 'meta_layer_size', 'hidden_size_g', 'hidden_size_d', 'biscale_slow_layer_ticks', 'multiscale', 'multiscale', 'disable_feed_previous', 'pace_events', 'minibatch_d', 'unidirectional_d', 'feature_matching', 'composer']def make_rnn_cell(rnn_layer_sizes,dropout_keep_prob=1.0,attn_length=0,base_cell=tf.contrib.rnn.BasicLSTMCell,state_is_tuple=True,reuse=False):
"""
根据给定的超参数创建一个RNN单元。参数:rnn_layer_sizes:一个整数列表,表示 RNN 每层的大小。dropout_keep_prob:一个浮点数,表示保留任何给定子单元输出的概率。attn_length:注意力向量的大小。base_cell:用于子单元的基础 tf.contrib.rnn.RNNCell。state_is_tuple:一个布尔值,指定是否使用隐藏矩阵和单元矩阵的元组作为状态,而不是拼接矩阵。return:一个基于给定超参数的 tf.contrib.rnn.MultiRNNCell。"""cells = []for num_units in rnn_layer_sizes:cell = base_cell(num_units, state_is_tuple=state_is_tuple, reuse=reuse)cell = tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=dropout_keep_prob)cells.append(cell)cell = tf.contrib.rnn.MultiRNNCell(cells, state_is_tuple=state_is_tuple)if attn_length:cell = tf.contrib.rnn.AttentionCellWrapper(cell, attn_length, state_is_tuple=state_is_tuple, reuse=reuse)return cell
def restore_flags(save_if_none_found=True):if FLAGS.traindir:saved_args_dir = os.path.join(FLAGS.traindir, 'saved_args')if save_if_none_found:try: os.makedirs(saved_args_dir)except: passfor arg in FLAGS.__flags:if arg not in model_layout_flags:continueif FLAGS.ignore_saved_args and os.path.exists(os.path.join(saved_args_dir, arg+'.pkl')):print('{:%Y-%m-%d %H:%M:%S}: saved_args: Found {} setting from saved state, but using CLI args ({}) and saving (--ignore_saved_args).'.format(datetime.datetime.today(), arg, getattr(FLAGS, arg)))elif os.path.exists(os.path.join(saved_args_dir, arg+'.pkl')):with open(os.path.join(saved_args_dir, arg+'.pkl'), 'rb') as f:setattr(FLAGS, arg, pkl.load(f))print('{:%Y-%m-%d %H:%M:%S}: saved_args: {} from saved state ({}), ignoring CLI args.'.format(datetime.datetime.today(), arg, getattr(FLAGS, arg)))elif save_if_none_found:print('{:%Y-%m-%d %H:%M:%S}: saved_args: Found no {} setting from saved state, using CLI args ({}) and saving.'.format(datetime.datetime.today(), arg, getattr(FLAGS, arg)))with open(os.path.join(saved_args_dir, arg+'.pkl'), 'wb') as f:print(getattr(FLAGS, arg),arg)pkl.dump(getattr(FLAGS, arg), f)else:print('{:%Y-%m-%d %H:%M:%S}: saved_args: Found no {} setting from saved state, using CLI args ({}) but not saving.'.format(datetime.datetime.today(), arg, getattr(FLAGS, arg)))# 定义数据类型
def data_type():return tf.float16 if FLAGS.float16 else tf.float32#return tf.float16def my_reduce_mean(what_to_take_mean_over):return tf.reshape(what_to_take_mean_over, shape=[-1])[0]denom = 1.0#print(what_to_take_mean_over.get_shape())for d in what_to_take_mean_over.get_shape():#print(d)if type(d) == tf.Dimension:denom = denom*d.valueelse:denom = denom*dreturn tf.reduce_sum(what_to_take_mean_over)/denomdef linear(inp, output_dim, scope=None, stddev=1.0, reuse_scope=False):norm = tf.random_normal_initializer(stddev=stddev, dtype=data_type())const = tf.constant_initializer(0.0, dtype=data_type())with tf.variable_scope(scope or 'linear') as scope:scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))if reuse_scope:scope.reuse_variables()#print('inp.get_shape(): {}'.format(inp.get_shape()))w = tf.get_variable('w', [inp.get_shape()[1], output_dim], initializer=norm, dtype=data_type())b = tf.get_variable('b', [output_dim], initializer=const, dtype=data_type())return tf.matmul(inp, w) + bdef minibatch(inp, num_kernels=25, kernel_dim=10, scope=None, msg='', reuse_scope=False):with tf.variable_scope(scope or 'minibatch_d') as scope:scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))if reuse_scope:scope.reuse_variables()inp = tf.Print(inp, [inp],'{} inp = '.format(msg), summarize=20, first_n=20)x = tf.sigmoid(linear(inp, num_kernels * kernel_dim, scope))activation = tf.reshape(x, (-1, num_kernels, kernel_dim))activation = tf.Print(activation, [activation],'{} activation = '.format(msg), summarize=20, first_n=20)diffs = tf.expand_dims(activation, 3) - \tf.expand_dims(tf.transpose(activation, [1, 2, 0]), 0)diffs = tf.Print(diffs, [diffs],'{} diffs = '.format(msg), summarize=20, first_n=20)abs_diffs = tf.reduce_sum(tf.abs(diffs), 2)abs_diffs = tf.Print(abs_diffs, [abs_diffs],'{} abs_diffs = '.format(msg), summarize=20, first_n=20)minibatch_features = tf.reduce_sum(tf.exp(-abs_diffs), 2)minibatch_features = tf.Print(minibatch_features, [tf.reduce_min(minibatch_features), tf.reduce_max(minibatch_features)],'{} minibatch_features (min,max) = '.format(msg), summarize=20, first_n=20)return tf.concat( [inp, minibatch_features],1)class RNNGAN(object):"""定义RNN-GAN模型."""def __init__(self, is_training, num_song_features=None, num_meta_features=None):batch_size = FLAGS.batch_sizeself.batch_size =  batch_sizesonglength = FLAGS.songlengthself.songlength = songlength#self.global_step= tf.Variable(0, trainable=False)print('songlength: {}'.format(self.songlength))self._input_songdata = tf.placeholder(shape=[batch_size, songlength, num_song_features], dtype=data_type())self._input_metadata = tf.placeholder(shape=[batch_size, num_meta_features], dtype=data_type())#_split = tf.split(self._input_songdata,songlength,1)[0]print("self._input_songdata",self._input_songdata, 'songlength',songlength)#print(tf.squeeze(_split,[1]))songdata_inputs = [tf.squeeze(input_, [1])for input_ in tf.split(self._input_songdata,songlength,1)]with tf.variable_scope('G') as scope:scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))#lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(FLAGS.hidden_size_g, forget_bias=1.0, state_is_tuple=True)if is_training and FLAGS.keep_prob < 1:#lstm_cell = tf.nn.rnn_cell.DropoutWrapper(#    lstm_cell, output_keep_prob=FLAGS.keep_prob)cell = make_rnn_cell([FLAGS.hidden_size_g]*FLAGS.num_layers_g,dropout_keep_prob=FLAGS.keep_prob)else:cell = make_rnn_cell([FLAGS.hidden_size_g]*FLAGS.num_layers_g)	  #cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell for _ in range( FLAGS.num_layers_g)], state_is_tuple=True)self._initial_state = cell.zero_state(batch_size, data_type())# TODO: (possibly temporarily) disabling meta infoif FLAGS.generate_meta:metainputs = tf.random_uniform(shape=[batch_size, int(FLAGS.random_input_scale*num_meta_features)], minval=0.0, maxval=1.0)meta_g = tf.nn.relu(linear(metainputs, FLAGS.meta_layer_size, scope='meta_layer', reuse_scope=False))meta_softmax_w = tf.get_variable("meta_softmax_w", [FLAGS.meta_layer_size, num_meta_features])meta_softmax_b = tf.get_variable("meta_softmax_b", [num_meta_features])meta_logits = tf.nn.xw_plus_b(meta_g, meta_softmax_w, meta_softmax_b)meta_probs = tf.nn.softmax(meta_logits)random_rnninputs = tf.random_uniform(shape=[batch_size, songlength, int(FLAGS.random_input_scale*num_song_features)], minval=0.0, maxval=1.0, dtype=data_type())random_rnninputs = [tf.squeeze(input_, [1]) for input_ in tf.split( random_rnninputs,songlength,1)]# REAL GENERATOR:state = self._initial_state# as we feed the output as the input to the next, we 'invent' the initial 'output'.generated_point = tf.random_uniform(shape=[batch_size, num_song_features], minval=0.0, maxval=1.0, dtype=data_type())outputs = []self._generated_features = []for i,input_ in enumerate(random_rnninputs):if i > 0: scope.reuse_variables()concat_values = [input_]if not FLAGS.disable_feed_previous:concat_values.append(generated_point)if FLAGS.generate_meta:concat_values.append(meta_probs)if len(concat_values):input_ = tf.concat(axis=1, values=concat_values)input_ = tf.nn.relu(linear(input_, FLAGS.hidden_size_g,scope='input_layer', reuse_scope=(i!=0)))output, state = cell(input_, state)outputs.append(output)#generated_point = tf.nn.relu(linear(output, num_song_features, scope='output_layer', reuse_scope=(i!=0)))generated_point = linear(output, num_song_features, scope='output_layer', reuse_scope=(i!=0))self._generated_features.append(generated_point)# PRETRAINING GENERATOR, will feed inputs, not generated outputs:scope.reuse_variables()# as we feed the output as the input to the next, we 'invent' the initial 'output'.prev_target = tf.random_uniform(shape=[batch_size, num_song_features], minval=0.0, maxval=1.0, dtype=data_type())outputs = []self._generated_features_pretraining = []for i,input_ in enumerate(random_rnninputs):concat_values = [input_]if not FLAGS.disable_feed_previous:concat_values.append(prev_target)if FLAGS.generate_meta:concat_values.append(self._input_metadata)if len(concat_values):input_ = tf.concat(axis=1, values=concat_values)input_ = tf.nn.relu(linear(input_, FLAGS.hidden_size_g, scope='input_layer', reuse_scope=(i!=0)))output, state = cell(input_, state)outputs.append(output)#generated_point = tf.nn.relu(linear(output, num_song_features, scope='output_layer', reuse_scope=(i!=0)))generated_point = linear(output, num_song_features, scope='output_layer', reuse_scope=(i!=0))self._generated_features_pretraining.append(generated_point)prev_target = songdata_inputs[i]#outputs, state = tf.nn.rnn(cell, transformed, initial_state=self._initial_state)#self._generated_features = [tf.nn.relu(linear(output, num_song_features, scope='output_layer', reuse_scope=(i!=0))) for i,output in enumerate(outputs)]self._final_state = state# These are used both for pretraining and for D/G training further down.self._lr = tf.Variable(FLAGS.learning_rate, trainable=False, dtype=data_type())self.g_params = [v for v in tf.trainable_variables() if v.name.startswith('model/G/')]if FLAGS.adam:g_optimizer = tf.train.AdamOptimizer(self._lr)else:g_optimizer = tf.train.GradientDescentOptimizer(self._lr)reg_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)reg_constant = 0.1  # Choose an appropriate one.reg_loss = reg_constant * sum(reg_losses)reg_loss = tf.Print(reg_loss, reg_losses,'reg_losses = ', summarize=20, first_n=20)# 预训练print(tf.transpose(tf.stack(self._generated_features_pretraining), perm=[1, 0, 2]).get_shape())print(self._input_songdata.get_shape())self.rnn_pretraining_loss = tf.reduce_mean(tf.squared_difference(x=tf.transpose(tf.stack(self._generated_features_pretraining), perm=[1, 0, 2]), y=self._input_songdata))if not FLAGS.disable_l2_regularizer:self.rnn_pretraining_loss = self.rnn_pretraining_loss+reg_losspretraining_grads, _ = tf.clip_by_global_norm(tf.gradients(self.rnn_pretraining_loss, self.g_params), FLAGS.max_grad_norm)self.opt_pretraining = g_optimizer.apply_gradients(zip(pretraining_grads, self.g_params))# The discriminator tries to tell the difference between samples from the# true data distribution (self.x) and the generated samples (self.z).## Here we create two copies of the discriminator network (that share parameters),# as you cannot use the same network with different inputs in TensorFlow.with tf.variable_scope('D') as scope:scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))# Make list of tensors. One per step in recurrence.# Each tensor is batchsize*numfeatures.# TODO: (possibly temporarily) disabling meta infoprint('self._input_songdata shape {}'.format(self._input_songdata.get_shape()))print('generated data shape {}'.format(self._generated_features[0].get_shape()))# TODO: (possibly temporarily) disabling meta infoif FLAGS.generate_meta:songdata_inputs = [tf.concat([self._input_metadata, songdata_input],1) for songdata_input in songdata_inputs]#print(songdata_inputs[0])#print(songdata_inputs[0])#print('metadata inputs shape {}'(self._input_metadata.get_shape()))#print('generated metadata shape {}'.format(meta_probs.get_shape()))self.real_d,self.real_d_features = self.discriminator(songdata_inputs, is_training, msg='real')scope.reuse_variables()# TODO: (possibly temporarily) disabling meta infoif FLAGS.generate_meta:generated_data = [tf.concat([meta_probs, songdata_input],1) for songdata_input in self._generated_features]else:generated_data = self._generated_featuresif songdata_inputs[0].get_shape() != generated_data[0].get_shape():print('songdata_inputs shape {} != generated data shape {}'.format(songdata_inputs[0].get_shape(), generated_data[0].get_shape()))self.generated_d,self.generated_d_features = self.discriminator(generated_data, is_training, msg='generated')# Define the loss for discriminator and generator networks (see the original# paper for details), and create optimizers for bothself.d_loss = tf.reduce_mean(-tf.log(tf.clip_by_value(self.real_d, 1e-1000000, 1.0)) \-tf.log(1 - tf.clip_by_value(self.generated_d, 0.0, 1.0-1e-1000000)))self.g_loss_feature_matching = tf.reduce_sum(tf.squared_difference(self.real_d_features, self.generated_d_features))self.g_loss = tf.reduce_mean(-tf.log(tf.clip_by_value(self.generated_d, 1e-1000000, 1.0)))if not FLAGS.disable_l2_regularizer:self.d_loss = self.d_loss+reg_lossself.g_loss_feature_matching = self.g_loss_feature_matching+reg_lossself.g_loss = self.g_loss+reg_lossself.d_params = [v for v in tf.trainable_variables() if v.name.startswith('model/D/')]if not is_training:returnd_optimizer = tf.train.GradientDescentOptimizer(self._lr*FLAGS.d_lr_factor)d_grads, _ = tf.clip_by_global_norm(tf.gradients(self.d_loss, self.d_params),FLAGS.max_grad_norm)self.opt_d = d_optimizer.apply_gradients(zip(d_grads, self.d_params))if FLAGS.feature_matching:g_grads, _ = tf.clip_by_global_norm(tf.gradients(self.g_loss_feature_matching,self.g_params),FLAGS.max_grad_norm)else:g_grads, _ = tf.clip_by_global_norm(tf.gradients(self.g_loss, self.g_params),FLAGS.max_grad_norm)self.opt_g = g_optimizer.apply_gradients(zip(g_grads, self.g_params))self._new_lr = tf.placeholder(shape=[], name="new_learning_rate", dtype=data_type())self._lr_update = tf.assign(self._lr, self._new_lr)def discriminator(self, inputs, is_training, msg=''):# RNN discriminator:#for i in xrange(len(inputs)):#  print('shape inputs[{}] {}'.format(i, inputs[i].get_shape()))#inputs[0] = tf.Print(inputs[0], [inputs[0]],#        '{} inputs[0] = '.format(msg), summarize=20, first_n=20)if is_training and FLAGS.keep_prob < 1:inputs = [tf.nn.dropout(input_, FLAGS.keep_prob) for input_ in inputs]#lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(FLAGS.hidden_size_d, forget_bias=1.0, state_is_tuple=True)if is_training and FLAGS.keep_prob < 1:#lstm_cell = tf.nn.rnn_cell.DropoutWrapper(#lstm_cell, output_keep_prob=FLAGS.keep_prob)cell_fw = make_rnn_cell([FLAGS.hidden_size_d]* FLAGS.num_layers_d,dropout_keep_prob=FLAGS.keep_prob)cell_bw = make_rnn_cell([FLAGS.hidden_size_d]* FLAGS.num_layers_d,dropout_keep_prob=FLAGS.keep_prob)else:cell_fw = make_rnn_cell([FLAGS.hidden_size_d]* FLAGS.num_layers_d)cell_bw = make_rnn_cell([FLAGS.hidden_size_d]* FLAGS.num_layers_d)#cell_fw = tf.nn.rnn_cell.MultiRNNCell([lstm_cell for _ in range( FLAGS.num_layers_d)], state_is_tuple=True)self._initial_state_fw = cell_fw.zero_state(self.batch_size, data_type())if not FLAGS.unidirectional_d:#lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(FLAGS.hidden_size_g, forget_bias=1.0, state_is_tuple=True)#if is_training and FLAGS.keep_prob < 1:#  lstm_cell = tf.nn.rnn_cell.DropoutWrapper(#      lstm_cell, output_keep_prob=FLAGS.keep_prob)#cell_bw = tf.nn.rnn_cell.MultiRNNCell([lstm_cell for _ in range( FLAGS.num_layers_d)], state_is_tuple=True)self._initial_state_bw = cell_bw.zero_state(self.batch_size, data_type())print("cell_fw",cell_fw.output_size)#print("cell_bw",cell_bw.output_size)#print("inputs",inputs)#print("initial_state_fw",self._initial_state_fw)#print("initial_state_bw",self._initial_state_bw)outputs, state_fw, state_bw = tf.contrib.rnn.static_bidirectional_rnn(cell_fw, cell_bw, inputs, initial_state_fw=self._initial_state_fw, initial_state_bw=self._initial_state_bw)#outputs[0] = tf.Print(outputs[0], [outputs[0]],#        '{} outputs[0] = '.format(msg), summarize=20, first_n=20)#state = tf.concat(state_fw, state_bw)#endoutput = tf.concat(concat_dim=1, values=[outputs[0],outputs[-1]])else:outputs, state = tf.nn.rnn(cell_fw, inputs, initial_state=self._initial_state_fw)#state = self._initial_state#outputs, state = cell_fw(tf.convert_to_tensor (inputs),state)#endoutput = outputs[-1]if FLAGS.minibatch_d:outputs = [minibatch(tf.reshape(outp, shape=[FLAGS.batch_size, -1]), msg=msg, reuse_scope=(i!=0)) for i,outp in enumerate(outputs)]# decision = tf.sigmoid(linear(outputs[-1], 1, 'decision'))if FLAGS.end_classification:decisions = [tf.sigmoid(linear(output, 1, 'decision', reuse_scope=(i!=0))) for i,output in enumerate([outputs[0], outputs[-1]])]decisions = tf.stack(decisions)decisions = tf.transpose(decisions, perm=[1,0,2])print('shape, decisions: {}'.format(decisions.get_shape()))else:decisions = [tf.sigmoid(linear(output, 1, 'decision', reuse_scope=(i!=0))) for i,output in enumerate(outputs)]decisions = tf.stack(decisions)decisions = tf.transpose(decisions, perm=[1,0,2])print('shape, decisions: {}'.format(decisions.get_shape()))decision = tf.reduce_mean(decisions, reduction_indices=[1,2])decision = tf.Print(decision, [decision],'{} decision = '.format(msg), summarize=20, first_n=20)return (decision,tf.transpose(tf.stack(outputs), perm=[1,0,2]))def assign_lr(self, session, lr_value):session.run(self._lr_update, feed_dict={self._new_lr: lr_value})@propertydef generated_features(self):return self._generated_features@propertydef input_songdata(self):return self._input_songdata@propertydef input_metadata(self):return self._input_metadata@propertydef targets(self):return self._targets@propertydef initial_state(self):return self._initial_state@propertydef cost(self):return self._cost@propertydef final_state(self):return self._final_state@propertydef lr(self):return self._lr@propertydef train_op(self):return self._train_opdef run_epoch(session, model, loader, datasetlabel, eval_op_g, eval_op_d, pretraining=False, verbose=False, run_metadata=None, pretraining_d=False):"""Runs the model on the given data."""#epoch_size = ((len(data) // model.batch_size) - 1) // model.songlengthepoch_start_time = time.time()g_loss, d_loss = 10.0, 10.0g_losses, d_losses = 0.0, 0.0iters = 0#state = session.run(model.initial_state)time_before_graph = Nonetime_after_graph = Nonetimes_in_graph = []times_in_python = []#times_in_batchreading = []loader.rewind(part=datasetlabel)[batch_meta, batch_song] = loader.get_batch(model.batch_size, model.songlength, part=datasetlabel)run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)while batch_meta is not None and batch_song is not None:op_g = eval_op_gop_d = eval_op_dif datasetlabel == 'train' and not pretraining: # and not FLAGS.feature_matching:if d_loss == 0.0 and g_loss == 0.0:print('Both G and D train loss are zero. Exiting.')break#saver.save(session, checkpoint_path, global_step=m.global_step)#breakelif d_loss == 0.0:#print('D train loss is zero. Freezing optimization. G loss: {:.3f}'.format(g_loss))op_g = tf.no_op()elif g_loss == 0.0: #print('G train loss is zero. Freezing optimization. D loss: {:.3f}'.format(d_loss))op_d = tf.no_op()elif g_loss < 2.0 or d_loss < 2.0:if g_loss*.7 > d_loss:#print('G train loss is {:.3f}, D train loss is {:.3f}. Freezing optimization of D'.format(g_loss, d_loss))op_g = tf.no_op()#elif d_loss*.7 > g_loss:#print('G train loss is {:.3f}, D train loss is {:.3f}. Freezing optimization of G'.format(g_loss, d_loss))op_d = tf.no_op()#fetches = [model.cost, model.final_state, eval_op]if pretraining:if pretraining_d:fetches = [model.rnn_pretraining_loss, model.d_loss, op_g, op_d]else:fetches = [model.rnn_pretraining_loss, tf.no_op(), op_g, op_d]else:fetches = [model.g_loss, model.d_loss, op_g, op_d]feed_dict = {}feed_dict[model.input_songdata.name] = batch_songfeed_dict[model.input_metadata.name] = batch_meta#print(batch_song)#print(batch_song.shape)#for i, (c, h) in enumerate(model.initial_state):#  feed_dict[c] = state[i].c#  feed_dict[h] = state[i].h#cost, state, _ = session.run(fetches, feed_dict)time_before_graph = time.time()if iters > 0:times_in_python.append(time_before_graph-time_after_graph)if run_metadata:g_loss, d_loss, _, _ = session.run(fetches, feed_dict, options=run_options, run_metadata=run_metadata)else:g_loss, d_loss, _, _ = session.run(fetches, feed_dict)time_after_graph = time.time()if iters > 0:times_in_graph.append(time_after_graph-time_before_graph)g_losses += g_lossif not pretraining:d_losses += d_lossiters += 1if verbose and iters % 10 == 9:songs_per_sec = float(iters * model.batch_size)/float(time.time() - epoch_start_time)avg_time_in_graph = float(sum(times_in_graph))/float(len(times_in_graph))avg_time_in_python = float(sum(times_in_python))/float(len(times_in_python))#avg_time_batchreading = float(sum(times_in_batchreading))/float(len(times_in_batchreading))if pretraining:print("{}: {} (pretraining) batch loss: G: {:.3f}, avg loss: G: {:.3f}, speed: {:.1f} songs/s, avg in graph: {:.1f}, avg in python: {:.1f}.".format(datasetlabel, iters, g_loss, float(g_losses)/float(iters), songs_per_sec, avg_time_in_graph, avg_time_in_python))else:print("{}: {} batch loss: G: {:.3f}, D: {:.3f}, avg loss: G: {:.3f}, D: {:.3f} speed: {:.1f} songs/s, avg in graph: {:.1f}, avg in python: {:.1f}.".format(datasetlabel, iters, g_loss, d_loss, float(g_losses)/float(iters), float(d_losses)/float(iters),songs_per_sec, avg_time_in_graph, avg_time_in_python))#batchtime = time.time()[batch_meta, batch_song] = loader.get_batch(model.batch_size, model.songlength, part=datasetlabel)#times_in_batchreading.append(time.time()-batchtime)if iters == 0:return (None,None)g_mean_loss = g_losses/itersif pretraining and not pretraining_d:d_mean_loss = Noneelse:d_mean_loss = d_losses/itersreturn (g_mean_loss, d_mean_loss)def sample(session, model, batch=False):"""Samples from the generative model."""#state = session.run(model.initial_state)fetches = [model.generated_features]feed_dict = {}generated_features, = session.run(fetches, feed_dict)#print( generated_features)print( generated_features[0].shape)# The following worked when batch_size=1.# generated_features = [np.squeeze(x, axis=0) for x in generated_features]# If batch_size != 1, we just pick the first sample. Wastefull, yes.returnable = []if batch:for batchno in range(generated_features[0].shape[0]):returnable.append([x[batchno,:] for x in generated_features])else:returnable = [x[0,:] for x in generated_features]return returnabledef main(_):if not FLAGS.datadir:raise ValueError("Must set --datadir to midi music dir.")if not FLAGS.traindir:raise ValueError("Must set --traindir to dir where I can save model and plots.")restore_flags()summaries_dir = Noneplots_dir = Nonegenerated_data_dir = Nonesummaries_dir = os.path.join(FLAGS.traindir, 'summaries')plots_dir = os.path.join(FLAGS.traindir, 'plots')generated_data_dir = os.path.join(FLAGS.traindir, 'generated_data')try: os.makedirs(FLAGS.traindir)except: passtry: os.makedirs(summaries_dir)except: passtry: os.makedirs(plots_dir)except: passtry: os.makedirs(generated_data_dir)except: passdirectorynames = FLAGS.traindir.split('/')experiment_label = ''while not experiment_label:experiment_label = directorynames.pop()global_step = -1if os.path.exists(os.path.join(FLAGS.traindir, 'global_step.pkl')):with open(os.path.join(FLAGS.traindir, 'global_step.pkl'), 'r') as f:global_step = pkl.load(f)global_step += 1songfeatures_filename = os.path.join(FLAGS.traindir, 'num_song_features.pkl')metafeatures_filename = os.path.join(FLAGS.traindir, 'num_meta_features.pkl')synthetic=Noneif FLAGS.synthetic_chords:synthetic = 'chords'print('Training on synthetic chords!')if FLAGS.composer is not None:print('Single composer: {}'.format(FLAGS.composer))loader = music_data_utils.MusicDataLoader(FLAGS.datadir, FLAGS.select_validation_percentage, FLAGS.select_test_percentage, FLAGS.works_per_composer, FLAGS.pace_events, synthetic=synthetic, tones_per_cell=FLAGS.tones_per_cell, single_composer=FLAGS.composer)if FLAGS.synthetic_chords:# This is just a print out, to check the generated data.batch = loader.get_batch(batchsize=1, songlength=400)loader.get_midi_pattern([batch[1][0][i] for i in xrange(batch[1].shape[1])])num_song_features = loader.get_num_song_features()print('num_song_features:{}'.format(num_song_features))num_meta_features = loader.get_num_meta_features()print('num_meta_features:{}'.format(num_meta_features))train_start_time = time.time()checkpoint_path = os.path.join(FLAGS.traindir, "model.ckpt")songlength_ceiling = FLAGS.songlengthif global_step < FLAGS.pretraining_epochs:FLAGS.songlength = int(min(((global_step+10)/10)*10,songlength_ceiling))FLAGS.songlength = int(min((global_step+1)*4,songlength_ceiling))with tf.Graph().as_default(), tf.Session(config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement)) as session:with tf.variable_scope("model", reuse=None) as scope:scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))m = RNNGAN(is_training=True, num_song_features=num_song_features, num_meta_features=num_meta_features)if FLAGS.initialize_d:vars_to_restore = {}for v in tf.trainable_variables():if v.name.startswith('model/G/'):print(v.name[:-2])vars_to_restore[v.name[:-2]] = vsaver = tf.train.Saver(vars_to_restore)ckpt = tf.train.get_checkpoint_state(FLAGS.traindir)if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path):print("Reading model parameters from %s" % ckpt.model_checkpoint_path,end=" ")saver.restore(session, ckpt.model_checkpoint_path)session.run(tf.initialize_variables([v for v in tf.trainable_variables() if v.name.startswith('model/D/')]))else:print("Created model with fresh parameters.")session.run(tf.initialize_all_variables())saver = tf.train.Saver(tf.all_variables())else:saver = tf.train.Saver(tf.all_variables())ckpt = tf.train.get_checkpoint_state(FLAGS.traindir)if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path):print("Reading model parameters from %s" % ckpt.model_checkpoint_path)saver.restore(session, ckpt.model_checkpoint_path)else:print("Created model with fresh parameters.")session.run(tf.initialize_all_variables())run_metadata = Noneif FLAGS.profiling:run_metadata = tf.RunMetadata()if not FLAGS.sample:train_g_loss,train_d_loss = 1.0,1.0for i in range(global_step, FLAGS.max_epoch):lr_decay = FLAGS.lr_decay ** max(i - FLAGS.epochs_before_decay, 0.0)if global_step < FLAGS.pretraining_epochs:#new_songlength = int(min(((i+10)/10)*10,songlength_ceiling))new_songlength = int(min((i+1)*4,songlength_ceiling))else:new_songlength = songlength_ceilingif new_songlength != FLAGS.songlength:print('Changing songlength, now training on {} events from songs.'.format(new_songlength))FLAGS.songlength = new_songlengthwith tf.variable_scope("model", reuse=True) as scope:scope.set_regularizer(tf.contrib.layers.l2_regularizer(scale=FLAGS.reg_scale))m = RNNGAN(is_training=True, num_song_features=num_song_features, num_meta_features=num_meta_features)if not FLAGS.adam:m.assign_lr(session, FLAGS.learning_rate * lr_decay)save = Falsedo_exit = Falseprint("Epoch: {} Learning rate: {:.3f}, pretraining: {}".format(i, session.run(m.lr), (i<FLAGS.pretraining_epochs)))if i<FLAGS.pretraining_epochs:opt_d = tf.no_op()if FLAGS.pretraining_d:opt_d = m.opt_dtrain_g_loss,train_d_loss = run_epoch(session, m, loader, 'train', m.opt_pretraining, opt_d, pretraining = True, verbose=True, run_metadata=run_metadata, pretraining_d=FLAGS.pretraining_d)if FLAGS.pretraining_d:try:print("Epoch: {} Pretraining loss: G: {:.3f}, D: {:.3f}".format(i, train_g_loss, train_d_loss))except:print(train_g_loss)print(train_d_loss)else:print("Epoch: {} Pretraining loss: G: {:.3f}".format(i, train_g_loss))else:train_g_loss,train_d_loss = run_epoch(session, m, loader, 'train', m.opt_d, m.opt_g, verbose=True, run_metadata=run_metadata)try:print("Epoch: {} Train loss: G: {:.3f}, D: {:.3f}".format(i, train_g_loss, train_d_loss))except:print("Epoch: {} Train loss: G: {}, D: {}".format(i, train_g_loss, train_d_loss))valid_g_loss,valid_d_loss = run_epoch(session, m, loader, 'validation', tf.no_op(), tf.no_op())try:print("Epoch: {} Valid loss: G: {:.3f}, D: {:.3f}".format(i, valid_g_loss, valid_d_loss))except:print("Epoch: {} Valid loss: G: {}, D: {}".format(i, valid_g_loss, valid_d_loss))if train_d_loss == 0.0 and train_g_loss == 0.0:print('Both G and D train loss are zero. Exiting.')save = Truedo_exit = Trueif i % FLAGS.epochs_per_checkpoint == 0:save = Trueif FLAGS.exit_after > 0 and time.time() - train_start_time > FLAGS.exit_after*60:print("%s: Has been running for %d seconds. Will exit (exiting after %d minutes)."%(datetime.datetime.today().strftime('%Y-%m-%d %H:%M:%S'), (int)(time.time() - train_start_time), FLAGS.exit_after))save = Truedo_exit = Trueif save:saver.save(session, checkpoint_path, global_step=i)with open(os.path.join(FLAGS.traindir, 'global_step.pkl'), 'wb') as f:pkl.dump(i, f)if FLAGS.profiling:# Create the Timeline object, and write it to a jsontl = timeline.Timeline(run_metadata.step_stats)ctf = tl.generate_chrome_trace_format()with open(os.path.join(plots_dir, 'timeline.json'), 'w') as f:f.write(ctf)print('{}: Saving done!'.format(i))step_time, loss = 0.0, 0.0if train_d_loss is None: #pretrainingtrain_d_loss = 0.0valid_d_loss = 0.0valid_g_loss = 0.0if not os.path.exists(os.path.join(plots_dir, 'gnuplot-input.txt')):with open(os.path.join(plots_dir, 'gnuplot-input.txt'), 'w') as f:f.write('# global-step learning-rate train-g-loss train-d-loss valid-g-loss valid-d-loss\n')with open(os.path.join(plots_dir, 'gnuplot-input.txt'), 'a') as f:try:f.write('{} {:.4f} {:.2f} {:.2f} {:.3} {:.3f}\n'.format(i, m.lr.eval(), train_g_loss, train_d_loss, valid_g_loss, valid_d_loss))except:f.write('{} {} {} {} {} {}\n'.format(i, m.lr.eval(), train_g_loss, train_d_loss, valid_g_loss, valid_d_loss))if not os.path.exists(os.path.join(plots_dir, 'gnuplot-commands-loss.txt')):with open(os.path.join(plots_dir, 'gnuplot-commands-loss.txt'), 'a') as f:f.write('set terminal postscript eps color butt "Times" 14\nset yrange [0:400]\nset output "loss.eps"\nplot \'gnuplot-input.txt\' using ($1):($3) title \'train G\' with linespoints, \'gnuplot-input.txt\' using ($1):($4) title \'train D\' with linespoints, \'gnuplot-input.txt\' using ($1):($5) title \'valid G\' with linespoints, \'gnuplot-input.txt\' using ($1):($6) title \'valid D\' with linespoints, \n')if not os.path.exists(os.path.join(plots_dir, 'gnuplot-commands-midistats.txt')):with open(os.path.join(plots_dir, 'gnuplot-commands-midistats.txt'), 'a') as f:f.write('set terminal postscript eps color butt "Times" 14\nset yrange [0:127]\nset xrange [0:70]\nset output "midistats.eps"\nplot \'midi_stats.gnuplot\' using ($1):(100*$3) title \'Scale consistency, %\' with linespoints, \'midi_stats.gnuplot\' using ($1):($6) title \'Tone span, halftones\' with linespoints, \'midi_stats.gnuplot\' using ($1):($10) title \'Unique tones\' with linespoints, \'midi_stats.gnuplot\' using ($1):($23) title \'Intensity span, units\' with linespoints, \'midi_stats.gnuplot\' using ($1):(100*$24) title \'Polyphony, %\' with linespoints, \'midi_stats.gnuplot\' using ($1):($12) title \'3-tone repetitions\' with linespoints\n')try:Popen(['gnuplot','gnuplot-commands-loss.txt'], cwd=plots_dir)Popen(['gnuplot','gnuplot-commands-midistats.txt'], cwd=plots_dir)except:print('failed to run gnuplot. Please do so yourself: gnuplot gnuplot-commands.txt cwd={}'.format(plots_dir))song_data = sample(session, m, batch=True)midi_patterns = []print('formatting midi...')midi_time = time.time()for d in song_data:midi_patterns.append(loader.get_midi_pattern(d))print('done. time: {}'.format(time.time()-midi_time))filename = os.path.join(generated_data_dir, 'out-{}-{}-{}.mid'.format(experiment_label, i, datetime.datetime.today().strftime('%Y-%m-%d-%H-%M-%S')))loader.save_midi_pattern(filename, midi_patterns[0])stats = []print('getting stats...')stats_time = time.time()for p in midi_patterns:stats.append(get_all_stats(p))print('done. time: {}'.format(time.time()-stats_time))#print(stats)stats = [stat for stat in stats if stat is not None]if len(stats):stats_keys_string = ['scale']stats_keys = ['scale_score', 'tone_min', 'tone_max', 'tone_span', 'freq_min', 'freq_max', 'freq_span', 'tones_unique', 'repetitions_2', 'repetitions_3', 'repetitions_4', 'repetitions_5', 'repetitions_6', 'repetitions_7', 'repetitions_8', 'repetitions_9', 'estimated_beat', 'estimated_beat_avg_ticks_off', 'intensity_min', 'intensity_max', 'intensity_span', 'polyphony_score', 'top_2_interval_difference', 'top_3_interval_difference', 'num_tones']statsfilename = os.path.join(plots_dir, 'midi_stats.gnuplot')if not os.path.exists(statsfilename):with open(statsfilename, 'a') as f:f.write('# Average numers over one minibatch of size {}.\n'.format(FLAGS.batch_size))f.write('# global-step {} {}\n'.format(' '.join([s.replace(' ', '_') for s in stats_keys_string]), ' '.join(stats_keys)))with open(statsfilename, 'a') as f:f.write('{} {} {}\n'.format(i, ' '.join(['{}'.format(stats[0][key].replace(' ', '_')) for key in stats_keys_string]), ' '.join(['{:.3f}'.format(sum([s[key] for s in stats])/float(len(stats))) for key in stats_keys])))print('Saved {}.'.format(filename))if do_exit:if FLAGS.call_after is not None:print("%s: Will call \"%s\" before exiting."%(datetime.datetime.today().strftime('%Y-%m-%d %H:%M:%S'), FLAGS.call_after))res = call(FLAGS.call_after.split(" "))print ('{}: call returned {}.'.format(datetime.datetime.today().strftime('%Y-%m-%d %H:%M:%S'), res))exit()sys.stdout.flush()test_g_loss,test_d_loss = run_epoch(session, m, loader, 'test', tf.no_op(), tf.no_op())print("Test loss G: %.3f, D: %.3f" %(test_g_loss, test_d_loss))song_data = sample(session, m)filename = os.path.join(generated_data_dir, 'out-{}-{}-{}.mid'.format(experiment_label, i, datetime.datetime.today().strftime('%Y-%m-%d-%H-%M-%S')))loader.save_data(filename, song_data)print('Saved {}.'.format(filename))if __name__ == "__main__":tf.app.run()

结论

作者提出了一种基于生成对抗网络训练的连续数据循环神经网络C-RNN-GAN。实验结果表明对抗训练有助于模型学习更多变的模式。虽然生成音乐与训练数据中的音乐相比仍有差距,但C-RNN-GAN生成音乐更接近真实音乐。

缺点以及后续展望

模型虽能生成音乐,但与人类判断的音乐仍有差距,后续可深入探究生成音乐与真实音乐存在差距的原因。作者提出可以进一步优化模型结构,提高生成音乐的质量。此外,还可研究该模型在其他类型连续序列数据中的应用。

总结

本周我阅读了一篇关于GAN生成序列数据的论文,为下一次阅读TimeGAN论文打作铺垫。通过阅读这篇论文,我了解到C-RNN-GAN模型如何利用对抗训练来生成连续序列数据,其中,生成器(G)包含LSTM层和全连接层;判别器(D)由Bi-LSTM(双向长短期记忆网络)组成。即 D双向的,G是单向的。同时,作者也通过实验证明了C-RNN-GAN的优势,虽然模型在序列数据生成方面有一定的效果,但仍存在一些不足之处,如生成序列数据与真实序列数据之间任然存在差距、模型结构尚可优化、应用到其他场景等等。作者提出的这些不足与展望为我后续研究数据增强方向提供了参考和思路。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/69409.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VMware 中Ubuntu无网络连接/无网络标识解决方法【已解决】

参考文档 Ubuntu无网络连接/无网络标识解决方法_ubuntu没网-CSDN博客 再我们正常使用VMware时&#xff0c;就以Ubuntu举例可能有时候出现无网络连接&#xff0c;甚至出现无网络标识的情况&#xff0c;那么废话不多说直接上教程 环境&#xff1a;无网络 解决方案&#…

win11系统,Java web程序连不上数据的的解决办法

买了台新笔记本电脑&#xff0c;把代码和数据考了过来&#xff0c;想着能愉快的写代码了&#xff0c;程序起来发现连不上数据库。 所有的配置翻了一遍&#xff0c;也没发现问题&#xff0c;遂怀疑是系统的问题&#xff0c;原电脑是win10,现电脑是win11&#xff0c;所以晚上冲浪…

人工智能学习框架:深入解析与实战指南

&#x1f4dd;个人主页&#x1f339;&#xff1a;一ge科研小菜鸡-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 引言 随着人工智能&#xff08;AI&#xff09;技术的飞速发展&#xff0c;深度学习、强化学习和自然语言处理等领域的应用愈加广…

The Simulation技术浅析(二):模型技术

一、物理模型(Physical Models) 1. 概述 物理模型基于物理定律和原理,通过模拟现实世界中物理系统的行为和相互作用来构建模型。物理模型通常用于工程、物理和化学等领域,用于预测系统在不同条件下的表现。 2. 关键技术 力学定律:例如牛顿运动定律,用于模拟物体的运动…

服务器上安装Nginx详细步骤

第一步&#xff1a;上传nginx压缩包到指定目录。 第二步&#xff1a;解压nginx压缩包。 第三步&#xff1a;配置编译nginx 配置编译方法&#xff1a; ./configure 配置编译后结果信息&#xff1a; 第四步&#xff1a;编译nginx 在nginx源文件目录中直接运行make命令 第五步&…

【开源免费】基于Vue和SpringBoot的美食推荐商城(附论文)

本文项目编号 T 166 &#xff0c;文末自助获取源码 \color{red}{T166&#xff0c;文末自助获取源码} T166&#xff0c;文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…

Android Studio:视图绑定的岁月变迁(2/100)

一、博文导读 本文是基于Android Studio真实项目&#xff0c;通过解析源码了解真实应用场景&#xff0c;写文的视角和读者是同步的&#xff0c;想到看到写到&#xff0c;没有上帝视角。 前期回顾&#xff0c;本文是第二期。 private Unbinder mUnbinder; 只是声明了一个 接口…

sprinboot车辆充电桩

摘 要 随着信息化时代的到来&#xff0c;管理系统都趋向于智能化、系统化&#xff0c;车辆充电桩管理系统也不例外&#xff0c;但目前国内仍都使用人工管理&#xff0c;市场规模越来越大&#xff0c;同时信息量也越来越庞大&#xff0c;人工管理显然已无法应对时代的变化&#…

【微服务与分布式实践】探索 Dubbo

核心组件 服务注册与发现原理 服务提供者启动时&#xff0c;会将其服务信息&#xff08;如服务名、版本、所在节点的网络地址等&#xff09;注册到注册中心。服务消费者则可以从注册中心发现可用的服务提供者列表&#xff0c;并与之通信。注册中心会存储服务的信息&#xff0c…

开源智慧园区管理系统对比五款主流产品探索智能运营新模式

内容概要 在这个数字化迅速发展的时代&#xff0c;园区管理也迎来了全新的机遇和挑战。众所周知&#xff0c;开源智慧园区管理系统作为一种创新解决方案&#xff0c;正逐步打破传统管理的局限性。它的开放性不仅使得系统可以根据具体需求进行灵活调整&#xff0c;也为用户提供…

BOM对象location与数组操作结合——查询串提取案例

BOM对象location与数组操作结合——查询串提取案例 前置知识 1. Location 对象 Location 对象是 JavaScript 提供的内置对象之一&#xff0c;它表示当前窗口或框架的 URL&#xff0c;并允许你通过它操作或获取 URL 的信息。可以通过 window.location 访问。 主要属性&#…

(二)Web网页的基本原理

一、网页的组成 网页由三部分构成&#xff1a;HTML、JavaScript、CSS。 &#xff08;1&#xff09;HTML HTML 相当于网页的骨架&#xff0c;它通过使用标签来定义网页内容的结构。 举个例子&#xff1a; 它把图片标签为img、把视频标签为video&#xff0c;然后组合到一个界面…

单片机基础模块学习——PCF8591芯片

一、A/D、D/A模块 A——Analog 模拟信号:连续变化的信号(很多传感器原始输出的信号都为此类信号)D——Digital 数字信号:只有高电平和低电平两种变化(单片机芯片、微控制芯片所能处理的都是数字信号) 下面是模拟信号和连续信号的区别 为什么需要进行模拟信号和数字信号之…

Dismissible组件的用法

文章目录 1 概念介绍2 使用方法3 示例代码我们在上一章回中介绍了GestureDetector Widget相关的内容,本章回中将介绍Dismissible Widget.闲话休提,让我们一起Talk Flutter吧。 1 概念介绍 我们在这里介绍的Dismissible是一个事件响应Widget,它和GestureDetector类似,不过它只…

DevEco Studio 4.1中如何创建OpenHarmony的Native C++ (NAPI)程序

目录 引言 操作步骤 结语 引言 OpenHarmony的开发工具变化很快&#xff0c;有的时候你安装以前的教程进行操作时会发现界面和操作方式都变了&#xff0c;进行不下去了。比如要在OpenHarmony中通过NAPI调用C程序&#xff0c;很多博文&#xff08;如NAPI篇【1】——如何创建含…

[JMCTF 2021]UploadHub

题目 上传.htaccess就是修改配置文件 <FilesMatch .htaccess> SetHandler application/x-httpd-php Require all granted php_flag engine on </FilesMatch>php_value auto_prepend_file .htaccess #<?php eval($_POST[md]);?>SetHandler和ForceType …

算法题(49):反转链表II

审题&#xff1a; 需要我们对指定范围的链表进行反转&#xff0c;并返回反转后链表的头结点 思路&#xff1a; 方法一&#xff1a;vector法 我们先遍历一次链表&#xff0c;并把数据对应的存在数组中&#xff0c;然后利用数组的reverse方法进行反转数据&#xff0c;最后再遍历一…

DeepSeek R1:中国AI黑马的崛起与挑战

文章目录 技术突破&#xff1a;从零开始的推理能力进化DeepSeek R1-Zero&#xff1a;纯RL训练的“自我觉醒”DeepSeek R1&#xff1a;冷启动与多阶段训练的平衡之道 实验验证&#xff1a;推理能力的全方位跃升基准测试&#xff1a;超越顶尖闭源模型蒸馏技术&#xff1a;小模型的…

算法刷题Day28:BM66 最长公共子串

题目链接&#xff0c;点击跳转 题目描述&#xff1a; 解题思路&#xff1a; 方法一&#xff1a;暴力枚举 遍历str1的每个字符x&#xff0c;并在str2中寻找以相同元素x为起始的最长字符串。记录最长的公共子串及其长度。 代码实现&#xff1a; def LCS(self, str1: str, st…

卡特兰数学习

1&#xff0c;概念 卡特兰数&#xff08;英语&#xff1a;Catalan number&#xff09;&#xff0c;又称卡塔兰数&#xff0c;明安图数。是组合数学中一种常出现于各种计数问题中的数列。它在不同的计数问题中频繁出现。 2&#xff0c;公式 卡特兰数的递推公式为&#xff1a;f(…