所谓平衡二叉树,就是每一个节点的左右子树的高度差不大于1。而一个子树的高度,就是父节点的最大高度。这道题的思路其实和二叉树的最大深度(力扣104)-CSDN博客有很大的相似之处,都需要将左右子树的高度返回给父节点,因此也是采用后序遍历。大家可以先看一下这篇博客,有助于理解该题。下面我基于你已经看过二叉树的最大深度(力扣104)-CSDN博客,进而讲解一下这道题的思路。
在这道题中,我们返回左右子树的高度的时候,需要比较左右子树的高度,如果子树并不平衡,直接返回-1,并且只要有一个子树不平衡,那么这棵二叉树就是不平衡的,所以我们可以写if语句,一旦检测到左右子树有一个高度为-1,就不断向上返回-1,最终在根节点得到的返回值也为-1,这表示这整个二叉树不平衡。反之,我们返回以该父节点为根节点的子树的高度,最终得到这整个二叉树的高度,这就表示这棵二叉树是平衡的,因为一旦在递归中途但回了-1,最后都不会得到该二叉树的高度。大家可以结合我下面的代码及注释,更容易理解。
代码如下:
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:int getHeight(TreeNode* node){//深度遍历的终止条件:遍历到空节点终止if(node == NULL) return 0;//递归左子树int height1 = getHeight(node -> left);//递归右子树 int height2 = getHeight(node -> right);//以下为处理逻辑 if(height1 == -1) return -1;//检测到左右子树有一个高度为-1,则直接返回-1if(height2 == -1) return -1;//比较左右子树高度,如果平衡,就返回以该节点为根节点的子树的高度if(abs(height1 - height2) <= 1) return max(height1,height2) + 1;//求子树的高度需要取该子树的左右子树中较大的高度else return -1;//不平衡就返回-1}bool isBalanced(TreeNode* root) {if(getHeight(root) == -1){return false;}else{return true;}}
};