深入MapReduce——引入

引入

前面我们已经深入了HDFS的设计与实现,对于分布式系统也有了不错的理解。

但HDFS仅仅解决了海量数据存储和读写的问题。要想让数据产生价值,一定是需要从数据中挖掘出价值才行,这就需要我们拥有海量数据的计算处理能力。

下面我们还是老样子,来数据一下要实现海量计算处理能力,有些什么核心痛点

大数据计算核心痛点

量级大

在稍微大一点的互联网企业,需要计算处理的数据量都开始以PB计了。而传统的计算处理模型中,一个程序所能调度的网络带宽通常在数百MB、内存容量通常就几十GB 、磁盘大小通常也就数TB,根本解决不了这么大量级的数据计算需求。(什么?我打宿傩?

易用差

虽然在04年已经有了分布式计算,但是那个时候的分布式计算都是专用的系统,只能专门处理某一类计算,比如进行大规模数据的排序。这样的系统没办法复用到其他的大数据计算场景,每一种应用都需要开发与维护专门的系统。很难让让没有分布式系统知识和经验的人,可以快速简便地去利用分布式计算处理海量数据。

门槛高

而且因为分布式系统中遇到故障和失败,是一个很常见的问题,传统的分布式程序设计(如MPI)非常复杂,用户需要关注的细节非常多,比如数据分片、数据传输、节点间通信等,因而设计分布式程序的门槛非常高。

容错差

在分布式环境下,随着集群规模的增加,集群中的故障率会显著增加,进而导致任务失败和数据丢失的可能性增加。

这里的“故障”主要指磁盘损坏、机器宕机、节点间通信失败等硬件故障和坏数据,以及用户程序bug产生的软件故障等。

Hadoop MapReduce设计

针对这些痛点,MapReduce的核心设计目标:在保障扩展性和容错性的前提下,提升海量数据计算处理的易用性!

而它的实现的核心思路也很简答,就是通过开发统一通用的编程模型,并构建一个抽象和高层的编程接口和框架,屏蔽分布式领域的复杂问题,让开发者能够专注于分析程序的业务逻辑。

模型本质就是对现实世界中某种事物或现象的一种概括、抽象的表示。 比如函数是输入和输出之间关系的抽象;数学公式是对物理与数学规律的抽象;软件架构图是软件工程师对软件系统的抽象。

通过前面深入HDFS的篇章,我们知道,从本质上来看,HDFS就是通过抽象、封装的思想,把成百上千台服务器、成千上万块硬盘的硬件做了一个封装,屏蔽了底层复杂实现,让使用者可以把它当成一块硬盘来使用,这极大的降低了它的使用门槛。

其实无论是什么领域,学会去抽象总结,才能把握事物的内在规律,而不是被纷繁复杂的事物表象所迷惑,才能更进一步深刻地认识这个世界!

为了让大家先对MapReduce这个通用模型有个初步的概念,我举个通俗的例子——假设我们有一大堆杂乱无序的相同品牌的扑克牌,要快速把它们梳理出有多少副完整的扑克牌,就可以分几个组,一组人分别梳理一堆牌,把相同的牌放到一个位置,然后下一组人基于这些牌去计数不同的牌有多少张,最后汇总起来,就能知道可以组成多少副完整的扑克牌了。

下面我们看看Hadoop MapReduce的设计与落地的总体思路。

参考思想:Unix设计哲学&Unix下的Bash和管道

MapReduce的设计哲学和Unix是一样的,叫做 “Do one thing, and do it well”,也就是每个模块只做一件事情,但是把这件事情彻底做好。

而MapReduce的计算流程设计思想,也是参考了Unix系统中,利用一个个命令,通过管道把数据处理流程串接起来处理的模式。

参考设计:Lisp类函数式编程

其实MapReduce编程模型并不是Hadoop原创,甚至也不是Google原创,而是借鉴了Lisp(python、scala)这类函数式编程语言的思想。

熟悉Java Stream API的都对这种编程模式并不陌生,它实际上就是map、groupingBy、reduce之类的操作,这种编程模型分离了程序的业务逻辑和控制逻辑,使得程序在大规模的分布式环境下运行成为了可能。

另外,尽管MapReduce编程模型非常简单,现实中的大多数任务却都可以用这种编程模型来表达,这在函数式编程语言中已经得到了证明,它为MapReduce后来广泛地流行奠定了基础。

参考论文:MapReduce: Simplified data processing on large cluster

Google在2004年发布的这篇论文也是大数据的三驾马车之一!

该论文主要包含下面内容:

  1. MapReduce的计算模型和应用场景;

  2. MapReduce实际是如何实现的,使得开发者无需关心分布式的存在;

  3. 如何逐步迭代优化MapReduce的性能。

这里就不单独开一篇文章介绍了,下面我们把论文里面的核心内容梳理一下。

需求场景

第一种,是对所有的数据,都只需要单条数据就能完成处理。

比如,有很多网页的内容,要从里面提取出来每一个网页的标题。这样的计算可以完全并行化。

第二种,是需要汇总多条数据才能完成计算。

比如,要统计日志里面某个URL被访问了多少次,只需要简单累加就可以了。

比如统计某个URL下面的唯一用户数,就需要将所有相同URL的数据,搬运到同一个计算节点上进行处理。不过,在搬运之后,不同的URL还是可以放到不同的节点进行处理的。

第三种,自然是一、二两种情况的组合了。

比如,先从网页数据里面,提取出网页的URL和标题,然后根据标题里面的关键字,统计特定关键字出现在多少个不同的URL里面,这就需要同时采用一二这两种情况的操作。

当然还有更复杂的数据操作,但是这些动作也都可以抽象成前面的两个动作的组合。因为无非,要处理的数据要么是完全独立的,要么需要多条数据之间的依赖。

计算模型

前面需求场景的

第一种动作,就是 MapReduce 里面的 Map

Map 函数,顾名思义就是一个映射函数,它会接受一个 key-value 对,然后把这个 key-value 对转换成0到多个新的 key-value 对并输出出去。

第二种动作,就是 MapReduce 里面的 Reduce

Reduce 函数,则是一个化简函数,它接受一个 Key,以及这个 Key 下的一组 Value,然后化简成一组新的值 Value 输出出去。

Map 函数的输出结果,会被整个 MapReduce 程序接手,进行 shuffle 操作。也就是数据搬运的过程。

shuffle 会把 Map 函数输出的所有相同的 Key 的 Value 整合到一个列表中,给到 Reduce 函数。并且给到 Reduce 函数的 Key,在每个 Reduce 里,都是按照 Key 排好序的。

它们就构建了 MapReduce 的计算模型

注意:

shuffle 过程的排序操作,并不是 MapReduce 框架本身的核心需求,而是为了技术上实现方便。因为我们要把相同 Key 的数据放到一起处理,而通过一个 HashMap 把所有的数据放在内存里,又不一定放得下。那么利用硬盘进行外部排序是一个最简单的,没有内存大小依赖的,对数据根据 Key 进行分组的解决办法。

MapReduce 计算模型的设计,其实就是典型的模版方法模式(Template Method Pattern)。

与其说它是一个分布式数据处理系统,不如说是分布式数据处理框架。

因为 MapReduce 框架已经设定好了整个数据处理的流程,用户只需要实现 Map 和 Reduce 这两个接口函数,就能完成海量的数据处理。

应用场景

论文里列了以下六个应用场景:

  1. 分布式 grep ;

  2. 统计 URL 的访问频次;

  3. 反转网页-链接图;

  4. 分域名的词向量;

  5. 生成倒排索引;

  6. 分布式排序。

实现挑战

要想让写 Map 和 Reduce 函数的人不需要关心“分布式”的存在,那么 MapReduce 框架本身就需要解决好三个很重要的问题:

  • 第一个,自然是如何做好各个服务器节点之间的“协同”,以及解决出现各种软硬件问题后的“容错”这两部分的设计。

  • 第二个,性能问题。MapReduce 框架非常容易遇到网络性能瓶颈。尽量充分利用 MapReduce 集群的计算能力,并让整个集群的性能可以随硬件的增加接近于线性增长,可以说是非常大的一个挑战。

  • 最后一个,易用性问题。Map 函数和 Reduce 函数最终还是运行在多个不同的机器上的,并且在 Map 和 Reduce 函数中还会遇到各种千奇百怪的数据。当我们的程序在遭遇到奇怪的数据出错的时候,我们需要有办法来进行 debug。

MapReduce 的协同

MapReduce的集群,通常就是分布式存储系统GFS的集群。

在这个集群里,本身会有一个调度系统(Scheduler)。

当我们要运行一个MapReduce任务的时候,其实就是把整个MapReduce的任务提交给这个调度系统,让这个调度系统来分配和安排 Map 函数和 Reduce 函数,以及后面会提到的 master 在不同的硬件上运行。

在MapReduce任务提交了之后,整个MapReduce任务就会按照这样的顺序来执行:

  • 第一步,由于写好的MapReduce程序,已经指定了输入路径。所以MapReduce会先找到GFS 上的对应路径,然后把对应路径下的所有数据进行分片(Split)。每个分片的大小通常是 64MB,这个尺寸也是GFS里面一个块(Block)的大小。接着,MapReduce 会在整个集群上,启动很多个MapReduce程序的复刻(fork)进程。

  • 第二步,在这些进程中,有一个和其他不同的特殊进程,就是一个master进程,剩下的都是worker进程。然后,会有M个map的任务以及R个 reduce 的任务,分配给这些worker进程去进行处理。这里的master进程,是负责找到空闲的(idle)worker进程,然后再把map任务或者reduce任务,分配给worker进程去处理。

    这里需要注意一点,并不是每一个map和reduce任务,都会单独建立一个新的worker 进程来执行。而是master进程会把map和reduce任务分配给有限的worker,因为一个worker通常可以顺序地执行多个map 和reduce 的任务。

  • 第三步,被分配到map任务的worker会读取某一个分片,分片里的数据会变成一个个key-value对喂给map任务,然后等Map函数计算完后,会生成的新的key-value对缓冲在内存里。

  • 第四步,这些缓冲了的key-value对,会定期地写到map任务所在机器的本地硬盘上。

    并且按照一个分区函数(partitioning function),把输出的数据分成R个不同的区域。

    而这些本地文件的位置,会被worker传回给到master节点,再由master节点将这些地址转发给reduce任务所在的worker 那里。

  • 第五步,运行reduce任务的worker,在收到master的通知之后,会通过RPC(远程过程调用)来从map任务所在机器的本地磁盘上,抓取数据。当reduce任务的worker 获取到所有的中间文件之后,它就会将中间文件根据Key进行排序。这样,所有相同Key的Value 的数据会被放到一起,也就是完成了混洗(Shuffle)的过程。

  • 第六步,reduce会对排序后的数据执行实际的Reduce函数,并把reduce的结果输出到当前这个reduce分片的最终输出文件里。

  • 第七步,当所有的map任务和reduce任务执行完成之后,master会唤醒启动MapReduce任务的用户程序,然后回到用户程序里,往下执行MapReduce任务提交之后的代码逻辑。

整个MapReduce的执行过程,也是一个典型的 Master-Slave 的分布式系统。map和 reduce所在的worker之间并不会直接通信,它们都只和master通信。另外,像是map 的输出数据在哪里这样的信息,也是告诉master,让master转达给reduce 所在的 worker。reduce从map里获取数据,也是直接拿到数据所在的地址去抓取,而不是让reduce通过RPC,调用map所在的worker去获取数据。

MapReduce 的容错(Fault Tolerance)

MapReduce的容错机制非常简单,可以简单地用两个关键词来描述,就是重新运行和写Checkpoints。

worker 节点的失效(Master Failure)

对于Worker 节点的失效,MapReduce框架解决问题的方式非常简单。就是换一台服务器重新运行这个Worker节点被分配到的所有任务。master节点会定时地去ping每一个worker 节点,一旦worker节点没有响应,就会认为这个节点失效了。于是,master会重新在另一台服务器上,启动一个worker进程,并且在新的worker进程所在的节点上,重新运行所有失效节点上被分配到的任务。而无论失效节点上,之前的map和 reduce任务是否执行成功,这些任务都会重新运行。因为在节点ping不通的情况下,很难保障它的本地硬盘还能正常访问。

master 节点的失效(Worker Failure)

对于 master节点的失效,直接就任由master节点失败了,也就是整个MapReduce任务失败了。而对于开发者来说,解决这个问题的办法也很简单,就是再次提交一下任务去重试。

因为master进程在整个任务中只有一个,它会失效的可能性很小。而MapReduce的任务也是一个用户离线数据处理的任务,并不是一个实时在线的服务,失败重来通常也没有什么影响,只是晚一点拿到数据结果罢了。

虽然在论文发表的时候,谷歌并没有实现对于master的失效自动恢复机制,但他们也给出了一个很简单的解决方案,那就是让master定时把它里面存放的信息,作为一个个的Checkpoint写入到硬盘中去。

针对这个其实可以把这个Checkpoint直接写到GFS里,然后让调度系统监控master。这样一旦master失效,就可以启动一个新的master,来读取Checkpoints 数据,然后就可以恢复任务,并继续执行了,而不需要重新运行整个任务。

对错误数据视而不见

worker 和 master 的节点失效,以及对应的恢复机制,通常都是来自于硬件问题。但是在海量数据处理的情况下,比如在TB乃至PB级别的数据下,还会经常遇到“脏数据”的问题。

这些数据,可能是日志采集的时候就出错了,也可能是一个非常罕见的边界情况(edge-case),我们的Map和Reduce 函数正好处理不了。甚至有可能,只是简单的硬盘硬件的问题带来的错误数据。

那么,对于这些异常数据,我们固然可以不断debug,一一修正。但是这么做,大多数时候都是划不来的,因为很可能为了一条数据记录,由于Map函数处理不了,你就要重新扫描几TB的数据。

所以,MapReduce不仅为节点故障提供了容错机制,对于这些极少数的数据异常带来的问题,也提供了一个容错机制。MapReduce会记录Map或者Reduce函数,运行出错的具体数据的行号,如果同样行号的数据执行重试还是出错,它就会跳过这一行的数据。如果这样的数据行数在总体数据中的比例很小,那么整个MapReduce程序会忽视这些错误,仍然执行完成。毕竟,一个URL被访问了1万次还是9999次,对于搜素引擎的排序结果不会有什么影响。

MapReduce 的性能优化

MapReduce集群里的硬件配置方面的最大瓶颈,自然和 GFS 也一样——网络带宽。

把程序搬到数据那儿去

既然网络带宽是瓶颈,那么优化的办法自然就是尽可能减少需要通过网络传输的数据。在MapReduce这个框架下,就是在分配map任务的时候,根据需要读取的数据在哪里进行分配。由于GFS是知道每一个Block 的数据是在哪台服务器上的。而MapReduce,会找到同样服务器上的worker,来分配对应的map 任务。如果那台服务器上没有,那么它就会找离这台服务器最近的、有worker 的服务器,来分配对应的任务。

除此之外,由于MapReduce程序的代码往往很小,可能只有几百KB或者几MB,但是每个map需要读取的一个分片的数据是64MB大小。这样,我们通过把要执行的MapReduce程序,复制到数据所在的服务器上,就不用多花那10倍乃至100倍的网络传输量了。

 

通过Combiner减少网络数据传输

除了Map函数需要读取输入的分片数据之外,Reduce所在的worker去抓取中间数据,一样也需要通过网络。那么要在这里减少网络传输,最简单的办法,就是尽可能让中间数据的数据量小一些。

在MapReduce的框架里,MapReduce允许开发者自己定义一个Combiner 函数。这个Combiner函数,会对在同一个服务器上所有map 输出的结果运行一次,然后进行数据合并。实际上,不仅是同一个Map函数的输出可以合并,同一台服务器上多个Map的输出,我们都可以合并。反正它们都在一台机器上,合并只需要本地的硬盘读写和CPU,并不需要我们最紧缺的网络资源。以域名的访问次数为例,它的数据分布一定有很强的头部效应,少量20%的域名可能占了80%的访问记录。这样一合并,我们要传输的数据至少可以减少60%。如果考虑一台 16 核的服务器,有16个map的worker运行,应该还能再减少80%以上。这样,通过一个中间的Combiner,我们要传输的数据一下子就下降了两个数量级,大大缓解了网络传输的压力。

注意:不是所有场景都能预聚合处理的,比如求中位数。

 

MapReduce 的 debug 信息

虽然我们一直说,我们希望MapReduce让开发者意识不到分布式的存在。但是归根到底,map和reduce的任务都是在分布式集群上运行的,这个就给我们对程序debug 带来了很大的挑战。无论是通过debugger做单步调试,还是打印出日志来看程序执行的情况,都不太可行。

所以,MapReduce也为开发者贴心地提供了三个办法来解决这个问题:

  • 第一个,是提供一个单机运行的MapReduce的库,这个库在接收到MapReduce任务之后,会在本地执行完成map和reduce的任务。这样,你就可以通过拿一点小数据,在本地调试你的MapReduce任务了,无论是debugger还是打日志,都行得通。

  • 第二个,是在master 里面内嵌了一个HTTP服务器,然后把master的各种状态展示出来给开发者看到。这样一来,你就可以看到有多少个任务执行完了,有多少任务还在执行过程中,它处理了多少输入数据,有多少中间数据,有多少输出的结果数据,以及任务完成的百分比等等。同样的,里面还有每一个任务的日志信息。

    另外通过这个HTTP 服务器,你还可以看到具体是哪一个worker里的任务失败了,对应的错误日志是什么。这样,你就可以快速在线上定位你的程序出了什么错,是在哪台服务器上。

  • 最后一个,是MapReduce框架里提供了一个计数器(counter)的机制。作为开发者,你可以自己定义几个计数器,然后在Map 和Reduce的函数里去调用这个计数器进行自增。所有 map 和reduce的计数器都会汇总到master节点上,通过上面的HTTP服务器里展现出来。

    比如,你就可以利用这个计数器,去统计有多少输入日志的格式和预期的不一样。如果比例太高,那么多半你的程序就有Bug,没有兼容所有合法的日志。

遗憾与缺陷

尽管MapReduce框架已经作出了很多努力,但是今天来看,整个计算框架的缺陷还是不少的。

主要的缺陷有两个:

  • 第一个是还没有100%做到让用户意识不到“分布式”的存在,无论是Combiner 还是Partitioner,都是让开发者意识到,它面对的还是分布式的数据和分布式的程序。

  • 第二个是性能仍然不太理想,这体现在两个方面:

    • 一个是每个任务都有比较大的overhead,都需要预先把程序复制到各个 worker 节点,然后启动进程;

    • 另一个是所有的中间数据都要读写多次硬盘。map 的输出结果要写到硬盘上,reduce抓取数据排序合并之后,也要先写到本地硬盘上再进行读取,所以快不起来。

Hadoop MapReduce核心设计

Hadoop MapReduce 参考了上面的相关内容,其设计和落地在企业落地后,也是有不断优化迭代的。

和MapReduce的论文不太一样。在Hadoop1.0实现里,每一个MapReduce的任务并没有一个独立的master进程,而是直接让调度系统承担了所有的worker 的master 的角色,这就是Hadoop1.0里的 JobTracker。在Hadoop1.0里,MapReduce论文里面的worker就是TaskTracker,用来执行map 和 reduce的任务。而分配任务,以及和TaskTracker沟通任务的执行情况,都由单一的JobTracker 来负责。

这个设计,也导致了只要服务器数量一多,JobTracker的负载就会很重。所以早年间,单个Hadoop 集群能够承载的服务器上限,被卡在了4000台。而且JobTracker也成为了整个Hadoop 系统很脆弱的“单点”。

在Hadoop 2.0,Hadoop社区把JobTracker的角色,拆分成了进行任务调度的Resource Mananger,以及监控单个MapReduce任务执行的Application Master,回到了和MapReduce论文相同的架构。

MRv1

第一代MapReduce计算框架,由两部分组成:编程模型(programming model)和运行时环境(runtime environment)。

基本编程模型是将问题抽象成Map和Reduce两个阶段。

  • Map阶段将输入数据解析成 key/value,迭代调用 map() 函数处理后,再以 key/value 的形式输出到本地目录;

  • Reduce 阶段则将 key 相同的 value 进行 reduce 处理,并将最终结果写到 HDFS 上。

运行时环境由两类服务组成:JobTracker 和 TaskTracker。

  • JobTracker 负责资源管理和所有作业的控制

  • TaskTracker 负责接收来自JobTracker的命令并执行它

YARN/MRv2

针对MRv1中的MapReduce在扩展性和多框架支持方面的不足,提出了全新的资源管理框架YARN(Yet Another Resource Negotiator)。

将JobTracker中的资源管理和作业控制功能分开,分别由两个不同进程ResourceManager和ApplicationMaster实现。

  • ResourceManager负责所有应用程序的资源分配

  • ApplicationMaster仅负责管理一个应用程序

总结

今天我们梳理了MapReduce的设计与实现的思路,后面我们深入源码去看看MapReduce有哪些有意思的东西。

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/68855.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

解决npm install安装出现packages are looking for funding run `npm fund` for details问题

当我们运行npm install时,可能会收到类似以下的提示信息:“x packages are looking for funding.” 这并不是错误提示,也不会影响项目的正常运行。其实实在提醒有一些软件包正在寻求资金支持。 根据提示输入npm fund可以查看详细的信息&#…

小米Vela操作系统开源:AIoT时代的全新引擎

小米近日正式开源了其物联网嵌入式软件平台——Vela操作系统,并将其命名为OpenVela。这一举动在AIoT(人工智能物联网)领域掀起了不小的波澜,也为开发者们提供了一个强大的AI代码生成器和开发平台。OpenVela项目源代码已托管至GitH…

2025_1_22打卡

402. 移掉 K 位数字 - 力扣(LeetCode) 279. 完全平方数 - 力扣(LeetCode)

【搞机】GMK-G3因特尔n100处理器核显直通win10虚拟机

环境 系统:Proxmox Virtual Environment 8.1.3 Linux内核:Linux version 6.5.13-6-pve (buildproxmox) (gcc (Debian 12.2.0-14) 12.2.0, GNU ld (GNU Binutils for Debian) 2.40) #1 SMP PREEMPT_DYNAMIC PMX 6.5.13-6 (2024-07-26T12:34Z) CPU&#x…

MECD+: 视频推理中事件级因果图推理--VLM长视频因果推理

论文链接:https://arxiv.org/pdf/2501.07227v1 1. 摘要及主要贡献点 摘要: 视频因果推理旨在从因果角度对视频内容进行高层次的理解。然而,目前的研究存在局限性,主要表现为以问答范式执行,关注包含孤立事件和基本因…

2024“博客之星”——我的博客成长与技术洞察

🌟欢迎来到 我的博客 —— 探索技术的无限可能! 🌟博客的简介(文章目录) 目录 一、引言二、个人成长与突破盘点(一)技能提升与知识拓展(二)创作风格与影响力提升&#xf…

KOC营销2.0:出海品牌在2025年春节的创新故事讲述

在全球化日益加深的今天,春节已不再是中国独有的节日符号,它逐渐成为了世界各地文化交融的一部分。对于出海品牌而言,春节不仅是连接中国消费者与海外市场的桥梁,更是展示品牌文化深度与创意的重要契机。KOC营销作为新时代的传播策…

最新-CentOS 7安装1 Panel Linux 服务器运维管理面板

CentOS 7安装1 Panel Linux 服务器运维管理面板 一、前言二、环境要求三、在线安装四、离线安装1.点击下面1 Panel官网链接访问下载,如未登录或注册,请登录/注册后下载2.使用将离线安装包上传至目标终端/tem目录下3.进入到/tem目录下解压离线安装包4.执行…

基于springboot+vue的高校社团管理系统的设计与实现

开发语言:Java框架:springbootJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包:…

vim在末行模式下的删除功能

删除:d :1d #删除第1行 :1,5d #删除第一行至第五行 :g/^\s*$/d #删除文件中的空白行 ——g所有 ——^表示行首 ——$表示行尾 ——\s 空白符 ——* 0至多个 示例:

DRG_DIP 2.0时代医院程序结构转型与数据结构优化研究

一、引言 1.1 DRG_DIP 2.0 改革背景与意义 医保支付方式改革在医疗保障制度改革中占据着极为关键的地位,是推动医疗领域变革的核心力量。它犹如一把精准的手术刀,对医疗资源的合理分配、医疗服务质量的稳步提升以及医疗费用的有效控制起着决定性作用。…

基于springboot体育运动会比赛系统

基于Spring Boot的体育运动会比赛系统是一个专为体育运动会组织和管理设计的现代化解决方案。 一、系统背景与目的 随着人们对健康生活的追求和对体育运动的热爱,体育运动会在各个层面得到了广泛的开展。然而,传统的体育运动会组织和管理方式存在着效率…

nginx 配置防爬虫

今天早上查看服务器,发现昨天发布的一个在线解析充电桩协议的网页工具有大量的访问记录,应该是爬虫在爬api接口数据。该工具api接口后台用的是python写的,和大多数项目一样也采用nginx反向代理,由于采用nginx,可以利用…

到华为考场考HCIE的注意事项和考试流程

大家好,我是张同学,来自成都职业技术学院2021级计算机网络专业。最近成功通过了 Datacom HCIE 考试,在这里和大家分享一下我的经验。 考证契机 在母校的培养下,我接触到ICT这个行业,打好了基础,开始了成…

HarmonyOS快速入门

HarmonyOS快速入门 1、基本概念 UI框架: HarmonyOS提供了一套UI开发框架,即方舟开发框架(ArkUI框架)。方舟开发框架可为开发者提供应用UI开发所必需的能力,比如多种组件、布局计算、动画能力、UI交互、绘制等。 方…

Ext2 文件系统:数字世界的基石,深度解码超时空存储魔法

本篇博主将带大家深入底层探秘系统是如何与磁盘进行相互交流的,配合精美配图,细节讲解来带大家深入探究(注:本篇文章建议了解磁盘内部物理结果组成及设计再进行阅读)。 羑悻的小杀马特.-CSDN博客羑悻的小杀马特.擅长C…

在centos上编译安装opensips【初级-默认安装】

环境:centos9 last opensips3.2 dnf update -y dnf install -y gcc make git automake libtool pcre-devel libxml2-devel \libcurl-devel postgresql-devel \bzip2-devel zlib-devel ncurses-devel libuuid-devel \libpcap-devel # 有报错的直接删除cd /usr/lo…

从零到上线:Node.js 项目的完整部署流程(包含 Docker 和 CICD)

从零到上线:Node.js 项目的完整部署流程(包含 Docker 和 CI/CD) 目录 项目初始化:构建一个简单的 Node.js 应用设置 Docker 环境:容器化你的应用配置 CI/CD:自动化构建与部署上线前的最后检查:…

类和对象——类的对象占用内存的大小计算

类的对象大小的计算 类的对象大小的计算1 案例分析2 如何计算类对象的大小案例分析中的猜测结构体内存对齐规则 类的对象大小的计算 1 案例分析 #include<iostream>class Date { public:void Init(int year, int mouth, int day) {year year;_mouth mouth;day_ day;…

nuxt3项目打包部署到服务器后配置端口号和开启https

nuxt3打包后的项目部署相对于一般vite打包的静态文件部署要稍微麻烦一些&#xff0c;还有一个主要的问题是开发环境配置的.env环境变量在打包后部署时获取不到&#xff0c;具体的解决方案可以参考我之前文章 nuxt3项目打包后获取.env设置的环境变量无效的解决办法。 这里使用的…