Transformer创新模型!Transformer+BO-SVR多变量回归预测,添加气泡图、散点密度图(Matlab)

Transformer创新模型!Transformer+BO-SVR多变量回归预测,添加气泡图、散点密度图(Matlab)

目录

    • Transformer创新模型!Transformer+BO-SVR多变量回归预测,添加气泡图、散点密度图(Matlab)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现Transformer+BO-SVR多变量回归预测,Transformer+BO-SVR/Bayes-SVR(程序可以作为论文创新支撑,目前尚未发表);

2.Transformer提取特征后,贝叶斯算法选择最佳的SVM核函数参数c和g,运行环境为Matlab2023b及以上;

3.data为数据集,输入多个特征,输出单个变量,多变量回归预测,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价;

在预测任务中,结合Transformer和支持向量回归(SVR)的方法可以充分利用Transformer在特征提取上的强大能力和SVR在回归任务中的准确性。以下是一个详细的步骤,使用Transformer提取特征,然后结合贝叶斯优化(BO)来选择最佳的SVM核函数参数c(正则化参数)和g(gamma参数,用于RBF核)。

步骤1:数据准备
数据收集:收集并准备数据。

数据预处理:归一化数据,以确保模型训练的有效性。

步骤2:使用Transformer提取特征
构建Transformer模型:

根据数据维度和预测需求,设计一个适合的Transformer模型。包括输入嵌入层、多头注意力机制、位置编码等。

训练Transformer模型:

使用数据训练Transformer模型,目标是学习数据的潜在表示或特征。

特征提取:

从训练好的Transformer模型中提取特征。

步骤3:贝叶斯优化支持向量回归(BO-SVR)
初始化SVR模型:

选择一个支持向量回归模型,确定使用的核函数(RBF核)。

定义优化目标:

确定一个损失函数来衡量SVR模型的性能。

贝叶斯优化过程:

使用贝叶斯优化算法(如高斯过程优化)来搜索最优的c和g参数。

贝叶斯优化通过迭代地选择参数组合、评估模型性能并更新参数空间的概率分布来工作。在每次迭代中,算法会根据当前的最佳估计选择下一个最有希望的参数组合进行评估。

实施贝叶斯优化:

使用找到的最优c和g参数训练最终的SVR模型。

评估模型在验证集或测试集上的性能。

步骤4:Transformer+BO-SVR/Bayes-SVR整合
整合流程:将Transformer特征提取步骤和BO-SVR步骤整合到一个完整的预测流程中。

模型评估:使用交叉验证或独立测试集评估整个流程的性能。

注意事项

数据划分:确保在优化SVR模型时,使用交叉验证。

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式私信博主回复Transformer创新模型!Transformer+BO-SVR多变量回归预测,添加气泡图、散点密度图(Matlab)
%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%  格式转换
for i = 1 : M vp_train{i, 1} = p_train(:, i);
endfor i = 1 : N vp_test{i, 1} = p_test(:, i);
end%% 构建的Transformer模型
outputSize = 1;  %数据输出y的维度  
numChannels = f_;
maxPosition = 256;
numHeads = 4;
numKeyChannels = numHeads*32;layers = [

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/68171.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

31_搭建Redis分片集群

Redis的主从复制模式和哨兵模式可以解决高可用、高并发读的问题。但是依然有两个问题没有解决:海量数据存储问题、高并发写的问题。由于数据量过大,单个master复制集难以承担,因此需要对多个复制集进行集群,形成水平扩展每个复制集只负责存储整个数据集的一部分,这就是Red…

ASP.NET Core - 日志记录系统(二)

ASP.NET Core - 日志记录系统(二) 2.4 日志提供程序2.4.1 内置日志提供程序2.4.2 源码解析 本篇接着上一篇 ASP.NET Core - 日志记录系统(一) 往下讲,所以目录不是从 1 开始的。 2.4 日志提供程序 2.4.1 内置日志提供程序 ASP.NET Core 包括…

nginx的可视化配置工具nginxWebUI的使用

文章目录 1、nginx简介2、nginxWebUI2.1、技术解读2.2、开源版和专业版之间的区别2.3、功能解读 3、安装与使用3.1、下载镜像3.2、查看镜像3.3、启动容器3.4、使用 4、总结 1、nginx简介 Nginx 是一个高效的 HTTP 服务器和反向代理,它擅长处理静态资源、负载均衡和…

【C++】IO 流

文章目录 👉C 语言的输入与输出👈👉流是什么👈👉C IO 流👈C 标准 IO 流C 和 C 语言的输入格式问题C 的多次输入内置类型和自定义类型的转换日期的多次输入C 文件 IO 流文本文件和二进制文件的读写 &#x1…

基于springboot的幼儿园管理系统系统

作者:学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等 文末获取“源码数据库万字文档PPT”,支持远程部署调试、运行安装。 项目包含: 完整源码数据库功能演示视频万字文档PPT 项目编码&#xff1…

Pycharm 使用教程

一、基本配置 1. 切换Python解释器 pycharm切换解释器版本 2. pycharm虚拟环境配置 虚拟环境的目的:创建适用于该项目的环境,与系统环境隔离,防止污染系统环境(包括需要的库)虚拟环境配置存放在项目根目录下的 ven…

Java设计模式——单例模式(特性、各种实现、懒汉式、饿汉式、内部类实现、枚举方式、双重校验+锁)

文章目录 单例模式1️⃣特性💪单例模式的类型与实现:类型懒汉式实现(线程不安全)懒汉式实现(线程安全)双重锁校验懒汉式(线程安全)饿汉式实现(线程安全)使用类的内部类实现⭐枚举方式实现单例(推荐)👍 单例…

STM32 FreeRTOS中断管理

目录 FreeRTOS的中断管理 1、STM32中断优先级管理 2、FreeRTOS任务优先级管理 3、寄存器和内存映射寄存器 4、BASEPRI寄存器 5、FreeRTOS与STM32中断管理结合使用 vPortRaiseBASEPRI vPortSetBASEPRI 6、FromISR后缀 7、在中断服务函数中调用FreeRTOS的API函数需注意 F…

[Spring] SpringCloud概述与环境工程搭建

🌸个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 🏵️热门专栏: 🧊 Java基本语法(97平均质量分)https://blog.csdn.net/2301_80050796/category_12615970.html?spm1001.2014.3001.5482 🍕 Collection与…

mobaxterm内置编辑器中文出现乱码如何解决:直接更换编辑器为本地编辑器

诸神缄默不语-个人CSDN博文目录 使用场景是我需要用mobaxterm通过SSH的方式登录服务器,进入服务器之后我就直接打开代码文件,mobaxterm会直接用内置的编辑器(MobaTextEditor)打开,但这会导致中文编程乱码。 我一开始是…

机器学习与人工智能的关系

机器学习与人工智能的关系 一、人工智能二、机器学习2.1 机器学习与人工智能的关系2.2 机器学习的本质 三、其他玩艺 曾几何时,人工智能还是个科幻名词,仿佛只属于未来世界。如今,它已经渗透到了我们生活的方方面面,成为顶流。我们…

一些常见的Java面试题及其答案

Java基础 1. Java中的基本数据类型有哪些? 答案:Java中的基本数据类型包括整数类型(byte、short、int、long)、浮点类型(float、double)、字符类型(char)和布尔类型(boo…

构建高性能网络服务:从 Socket 原理到 Netty 应用实践

1. 引言 在 Java 网络编程中,Socket 是实现网络通信的基础(可以查看我的上一篇博客)。它封装了 TCP/IP 协议栈,提供了底层通信的核心能力。而 Netty 是在 Socket 和 NIO 的基础上,进一步封装的高性能、异步事件驱动的…

Docker PG流复制搭建实操

目录标题 制作镜像1. 删除旧的容器2. 创建并配置容器3. 初始化数据库并启动 主库配置参数4. 配置主库5. 修改 postgresql.conf 配置 备库配置参数6. 创建并配置备库容器7. 初始化备库 流复制8. 检查主库复制状态9. 检查备库配置 优化建议问题1:FATAL: using recover…

Elasticsearch 批量导入数据(_bluk方法)

官方API&#xff1a;https://www.elastic.co/guide/en/elasticsearch/reference/current/docs-bulk.html 建议先看API POST /<索引名>/_bulk 格式要求&#xff1a; POST _bulk { "index" : { "_index" : "test", "_id" : &q…

Active Prompting with Chain-of-Thought for Large Language Models

题目 大型语言模型的思维链主动提示 论文地址&#xff1a;https://arxiv.org/abs/2302.12246 项目地址&#xff1a;https://github.com/shizhediao/active-prompt 摘要 大型语言模型(LLM)规模的不断扩大为各种需要推理的复杂任务带来了涌现能力&#xff0c;例如算术和常识推理…

Windows图形界面(GUI)-QT-C/C++ - QT控件创建管理初始化

公开视频 -> 链接点击跳转公开课程博客首页 -> ​​​链接点击跳转博客主页 目录 控件创建 包含对应控件类型头文件 实例化控件类对象 控件设置 设置父控件 设置窗口标题 设置控件大小 设置控件坐标 设置文本颜色和背景颜色 控件排版 垂直布局 QVBoxLayout …

04、Redis深入数据结构

一、简单动态字符串SDS 无论是Redis中的key还是value&#xff0c;其基础数据类型都是字符串。如&#xff0c;Hash型value的field与value的类型&#xff0c;List型&#xff0c;Set型&#xff0c;ZSet型value的元素的类型等都是字符串。redis没有使用传统C中的字符串而是自定义了…

traceroute原理探究

文章中有截图&#xff0c;看不清的话&#xff0c;可以把浏览器显示比例放大到200%后观看。 linux下traceroute的原理 本文通过抓包观察一下linux下traceroute的原理 环境&#xff1a;一台嵌入式linux设备&#xff0c;内网ip是192.168.186.195&#xff0c;其上有192.168.202.…