详解GPT-信息抽取任务 (GPT-3 FAMILY LARGE LANGUAGE MODELS)

GPT-3 FAMILY LARGE LANGUAGE MODELS

Information Extraction

自然语言处理信息提取任务(NLP-IE):从非结构化文本数据中提取结构化数据,例如提取实体、关系和事件 [164]。将非结构化文本数据转换为结构化数据可以实现高效的数据处理、知识发现、决策制定并增强信息检索和搜索。

Information Extraction 子任务

信息抽取任务多种多样[153]:

  1. 实体类型(entity typing)
  2. 实体提取(entity extraction)
  3. 关系分类(relation classification)
  4. 关系提取(relation extraction)
  5. 事件检测(event detection)
  6. 事件参数提取(event argument extraction )
  7. 事件提取 (event extraction)

Entity typing (ET):classifying identified named entity mentions into one of the predefined entity types [165].

Named Entity Recognition (NER):identifying entity mentions and then assigning them to appropriate entity types [166].

Relation classification (RC):identifying the semantic relationship between the given two target entities in a sentence [167].

Relation Extraction (RE):extracting the entities and then classifying the semantic relationship between the two target entities, i.e., involves entity extraction followed by relation classification [168].

Event Detection (ED):aims to identify and categorize words or phrases that trigger events [169].

Event Argument Extraction (EAE):identifying event arguments, i.e., entities involved in the event and then classifying their roles [170].

Event Extraction (EE):aims to extract both the events and the involved entities, i.e., it involves event detection followed by event argument extraction [171].

GPT relation classification 任务

[138], [149], [153]–[156], [163]

[138] Y. Wang, Y. Zhao, and L. Petzold, “Are large language models ready for healthcare? a comparative study on clinical language understanding,” arXiv preprint arXiv:2304.05368, 2023.  chain-of-thought (CoT)  self-question prompting (SQP)

链接:https://proceedings.mlr.press/v219/wang23c/wang23c.pdf

[149] B. J. Gutie ́rrez, N. McNeal, C. Washington, Y. Chen, L. Li, H. Sun, and Y. Su, “Thinking about gpt-3 in-context learning for biomedical ie? think again,” in Findings of the Association for Computational Linguistics: EMNLP 2022, 2022, pp. 4497–4512.

链接:https://arxiv.org/pdf/2203.08410

[153] B. Li, G. Fang, Y. Yang, Q. Wang, W. Ye, W. Zhao, and S. Zhang, “Evaluating chatgpt’s information extraction capabilities: An assessment of performance, explainability, calibration, and faithfulness,” arXiv preprint arXiv:2304.11633, 2023.  

链接:https://arxiv.org/pdf/2304.11633

[154] C. Chan, J. Cheng, W. Wang, Y. Jiang, T. Fang, X. Liu, and Y. Song, “Chatgpt evaluation on sentence level relations: A focus on temporal, causal, and discourse relations,” arXiv preprint arXiv:2304.14827, 2023.  

链接:https://arxiv.org/pdf/2304.14827

[155] X. Xu, Y. Zhu, X. Wang, and N. Zhang, “How to unleash the power of large language models for few-shot relation extraction?” arXiv preprint arXiv:2305.01555, 2023.  

链接:https://arxiv.org/pdf/2305.01555

[156] Z. Wan, F. Cheng, Z. Mao, Q. Liu, H. Song, J. Li, and S. Kurohashi, “Gpt-re: In-context learning for relation extraction using large language models,” arXiv preprint arXiv:2305.02105, 2023. chain-of-thought (CoT)

链接:https://arxiv.org/pdf/2305.02105

[163] K. Zhang, B. J. Gutie ́rrez, and Y. Su, “Aligning instruction tasks unlocks large language models as zero-shot relation extractors,” arXiv preprint arXiv:2305.11159, 2023.

链接:https://arxiv.org/pdf/2305.11159

GPT relation extraction 任务

[148], [151]–[153], [158], [161], [162],

[148] X. Wei, X. Cui, N. Cheng, X. Wang, X. Zhang, S. Huang, P. Xie, J. Xu, Y. Chen, M. Zhang et al., “Zero-shot information extraction via chatting with chatgpt,” arXiv preprint arXiv:2302.10205, 2023.

链接:https://eva.fing.edu.uy/pluginfile.php/524749/mod_folder/content/0/ChatIE_Zero-Shot%20Information%20Extraction%20via%20Chatting%20with%20ChatGPT.pdf

[151] H. Rehana, N. B. C ̧ am, M. Basmaci, Y. He, A.  ̈Ozgu ̈ r, and J. Hur, “Evaluation of gpt and bert-based models on identifying protein-protein interactions in biomedical text,” arXiv preprint arXiv:2303.17728, 2023.  

链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11101131/pdf/nihpp-2303.17728v2.pdf

[152] C. Yuan, Q. Xie, and S. Ananiadou, “Zero-shot temporal relation extraction with chatgpt,” arXiv preprint arXiv:2304.05454, 2023. chain-of-thought (CoT)  event ranking (ER)

链接:https://arxiv.org/pdf/2304.05454

[153] B. Li, G. Fang, Y. Yang, Q. Wang, W. Ye, W. Zhao, and S. Zhang, “Evaluating chatgpt’s information extraction capabilities: An assessment of performance, explainability, calibration, and faithfulness,” arXiv preprint arXiv:2304.11633, 2023.

链接:https://arxiv.org/pdf/2304.11633

[158] Y. Ma, Y. Cao, Y. Hong, and A. Sun, “Large language model is not a good few-shot information extractor, but a good reranker for hard samples!” arXiv preprint arXiv:2303.08559, 2023.

链接:https://arxiv.org/pdf/2303.08559

[161] S. Wadhwa, S. Amir, and B. C. Wallace, “Revisiting relation extraction in the era of large language models,” arXiv preprint arXiv:2305.05003, 2023. chain-of-thought (CoT)

链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10482322/pdf/nihms-1912166.pdf

[162] P. Li, T. Sun, Q. Tang, H. Yan, Y. Wu, X. Huang, and X. Qiu, “Codeie: Large code generation models are better few-shot information extractors,” arXiv preprint arXiv:2305.05711, 2023.

链接:https://arxiv.org/pdf/2305.05711

Summary

参考文献

[164] Y. Lu, Q. Liu, D. Dai, X. Xiao, H. Lin, X. Han, L. Sun, and H. Wu, “Unified structure generation for universal information extraction,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, pp. 5755–5772.

[165] Y. Chen, J. Cheng, H. Jiang, L. Liu, H. Zhang, S. Shi, and R. Xu, “Learning from sibling mentions with scalable graph inference in fine-grained entity typing,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, pp. 2076–2087.

[166] S. S. S. Das, A. Katiyar, R. J. Passonneau, and R. Zhang, “Container: Few-shot named entity recognition via contrastive learning,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, pp. 6338–6353.

[167] S. Wu and Y. He, “Enriching pre-trained language model with entity information for relation classification,” in Proceedings of the 28th ACM international conference on information and knowledge management, 2019, pp. 2361–2364.

[168] D. Ye, Y. Lin, P. Li, and M. Sun, “Packed levitated marker for entity and relation extraction,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, pp. 4904–4917.

[169] K. Zhao, X. Jin, L. Bai, J. Guo, and X. Cheng, “Knowledgeenhanced self-supervised prototypical network for few-shot event detection,” in Findings of the Association for Computational Linguistics: EMNLP 2022, 2022, pp. 6266–6275.  

[170] Y. Ma, Z. Wang, Y. Cao, M. Li, M. Chen, K. Wang, and J. Shao, “Prompt for extraction? paie: Prompting argument interaction for event argument extraction,” in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2022, pp. 6759–6774.

[1] A Survey of GPT-3 Family Large Language  Models Including ChatGPT and GPT-4. 2023

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/66333.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

通过blob请求后端导出文件

后端controller PostMapping("/exportPlanProject2")public void exportActive(RequestBody USER user, HttpServletResponse httpServletResponse) throws IOException {}后端service public void exportExcel2(HttpServletResponse response) throws IOException {…

【跨域】解决SpringBoot和openresty跨域问题

平时后端只需要写一个配置类就可以解决跨域但是最近的新项目死活不行 先说结论 项目中的权限校验(也可以是其他的)拦截器优先级高于跨域拦截器导致跨域处理失效 解决办法 1.在addCorsMappings上增加 Order(value -100)// 跨域优先级最高 2.nginx放行OPTIONS请求 SpringBo…

数据结构9.3 - 文件基础(C++)

目录 1 打开文件字符读写关闭文件 上图源自&#xff1a;https://blog.csdn.net/LG1259156776/article/details/47035583 1 打开文件 法 1法 2ofstream file(path);ofstream file;file.open(path); #include<bits/stdc.h> using namespace std;int main() {char path[]…

k8s基础(3)—Kubernetes-Deployment

一、 Deployment概述 ‌ Kubernetes Deployment‌是Kubernetes中的一个核心概念&#xff0c;它是一种高级别的控制器&#xff0c;用于管理Pod和ReplicaSet&#xff0c;确保应用程序的高可用性和稳定性。Deployment通过声明式配置来创建和更新Pod和ReplicaSet&#xff0c;从而…

JS获取URL中参数值的4种方法

方法1&#xff1a;现代浏览器都支持 URL 和 URLSearchParams 对象&#xff0c;可以很方便地从URL中提取参数 // 假设当前URL为 "https://example.com/?nameJohn&age30" const url new URL(window.location.href); // 或者你可以直接传入一个URL字符串 const n…

ubuntu开启root用户

Ubuntu 启用 root 账户 在 Ubuntu 中&#xff0c;默认情况下 root 账户是被禁用的。为了启用 root 账户&#xff0c;你需要设置 root 用户的密码。以下是如何在 Ubuntu 上启用 root 账户的步骤&#xff1a; 打开终端。 输入以下命令来设置 root 用户的密码&#xff1a; sud…

C#跨窗口传递Halcon图像/参数

Demo目的&#xff0c;图像同步到附属窗口&#xff0c;通过附属窗口各类操作&#xff08;参数设置&#xff0c;ROI重置等&#xff09;简化主界面 本文主要演示图像传递 主界面 附属界面 运行效果 主界面代码 using System; using System.Collections.Generic; using System.C…

JavaScript 随机 数用法

在 JavaScript 中,生成随机数通常是使用 Math.random() 方法。这个方法生成一个伪随机浮点数,范围从 0(包括)到 1(不包括)。以下是一些常见的随机数用法和技巧: 1. 生成一个 [0, 1) 范围内的随机浮点数 let randomNum = Math.random(); console.log(randomNum); // 输

32单片机从入门到精通之开发环境——调试工具(七)

在人生的道路上&#xff0c;困难和挫折时常会出现。但是我们不能因此放弃&#xff0c;而是要坚持努力&#xff0c;克服困难&#xff0c;实现自己的梦想。成功不是一蹴而就的&#xff0c;它需要付出大量的努力和坚持不懈的精神。每一次的失败都是一次宝贵的经验&#xff0c;它能…

查询docker overlay2文件夹下的 c7ffc13c49xxx是哪一个容器使用的

问题背景 查询docker overlay2文件夹下的 c7ffc13c49xxx是哪一个容器使用的 [root@lnops overlay2]# du -sh * | grep G 1.7G 30046eca3e838e43d16d9febc63cc8f8bb3d327b4c9839ca791b3ddfa845e12e 435G c7ffc13c49a43f08ef9e234c6ef9fc5a3692deda3c5d42149d0070e9d8124f71 1.…

LeetCode:700.二叉搜索树中的搜索

跟着carl学算法&#xff0c;本系列博客仅做个人记录&#xff0c;建议大家都去看carl本人的博客&#xff0c;写的真的很好的&#xff01; 代码随想录 LeetCode&#xff1a;700.二叉搜索树中的搜索 给定二叉搜索树&#xff08;BST&#xff09;的根节点 root 和一个整数值 val。 你…

美食烹饪互动平台

本文结尾处获取源码。 一、相关技术 后端&#xff1a;Java、JavaWeb / Springboot。前端&#xff1a;Vue、HTML / CSS / Javascript 等。数据库&#xff1a;MySQL 二、相关软件&#xff08;列出的软件其一均可运行&#xff09; IDEAEclipseVisual Studio Code(VScode)Navica…

单片机从入门到放弃教程001

1. 单片机介绍 单片微型计算机(Single Chip Microcomputer)简称单片机&#xff0c;是典型的嵌入式微处理器(Micro Controller Unit简称MCU)&#xff0c;是一种将中央处理器&#xff08;CPU&#xff09;、内存、输入输出接口以及其他功能模块集成在单一芯片上的微型计算机。 1…

2024数据湖架构实践案例(附资料)

2024年数据湖架构的一些实践情况&#xff1a; 技术趋势 湖仓架构融合&#xff1a;湖仓架构的采用在2024年持续发展&#xff0c;它结合了数据湖的可扩展性和数据仓库的分析性能&#xff0c;能够处理多种数据类型和复杂的工作流程&#xff0c;为企业提供更全面的数据视图。例如…

Redis——主从复制模式

文章目录 1. 引入2. 主从复制模式2.1 概念2.2 配置2.3 原理2.3.1 建立连接阶段2.3.2 命令传播阶段2.3.3 心跳检测机制2.3.4 部分重同步机制(1) 主节点通过 复制积压缓冲区 记录写命令(2) 主节点通过 复制偏移量 判断从节点是否满足执行部分重同步的条件(3) 执行部分重同步操作 …

Mysql数据实时同步到Es上

同步方案 ① 同步双写 同步双写实一种数据同步策略&#xff0c;它指的是在主数据库(如mysql) 上进行数据修改操作&#xff0c;同时将这些修改同步写入到ES 中&#xff0c;这种策略旨在确保两个数据库之间的数据一致性&#xff0c;并且优化系统的读写性能。 目标 同步双写是…

供需平台信息发布付费查看小程序系统开发方案

供需平台信息发布付费查看小程序系统主要是为了满足个人及企业用户的供需信息发布与匹配需求。 一、目标用户群体 个人用户&#xff1a;寻找兼职工作、二手物品交换、本地服务&#xff08;如家政、维修&#xff09;等。 小微企业&#xff1a;推广产品和服务&#xff0c;寻找合…

深入理解计算机系统—虚拟内存(3)

9.9 动态内存分配 虽然可以使用低级的 mmap 和 munmap 函数来创建和删除虚拟内存的区域&#xff0c;但是 C程序员还是会觉得当运行时需要额外虚拟内存时&#xff0c;用 动态内存分配器 更方便&#xff0c;也有更好的可移植性。 动态内存分配器维护着一个进程的虚拟内存区域&…

Swift Concurrency(并发)学习

Swift 的并发模型是基于 异步任务 和 任务调度 的一套现代化的异步编程工具。以下是相关语法规则总结 1. 异步函数&#xff08;async&#xff09;与 await async 用于声明一个异步函数&#xff0c;表示函数可能会执行耗时任务&#xff0c;例如网络请求、文件读写等。在调用异步…

html本地字符串处理工具|去重、分割、求交集、求并集

源代码&#xff08;保存到本地文件命名为 xxx.html&#xff0c;用浏览器打开该文件即可使用&#xff09; <!DOCTYPE html> <html lang"zh-CN"><head><meta charset"UTF-8"><title>数据处理</title><style>inpu…