OpenCV-Python实战(9)——滤波降噪

一、均值滤波器 cv2.blur()

img = cv2.blur(src=*,ksize=*,anchor=*,borderType=*)

img:目标图像。

src:原始图像。

ksize:滤波核大小,(width,height)。

anchor:滤波核锚点,默认为:(-1,-1)核的中心。

borderType:边界样式,一般填默认即可。

import cv2lena = cv2.imread('Lena_D.png')[::2,::2,:]img1 = cv2.blur(src=lena,ksize=(3,3))
img2 = cv2.blur(src=lena,ksize=(5,5))
img3 = cv2.blur(src=lena,ksize=(7,7))cv2.imshow('lena',lena)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)
cv2.imshow('img3',img3)
cv2.waitKey(0)
cv2.destroyAllWindows()

二、方框滤波 cv2.boxFilter() 

img = cv2.boxFilter(src=*,ddepth=*,ksize=*,anchor=*,normalize=*,borderType=*)

ddepth:图像深度(channel 数),默认:-1,与原始图像深度相同。

normalize:是否归一化处理。1表示归一化; 0表示不归一化,将核内像素做 add 操作,像素最大值为255。

img:目标图像。

src:原始图像。

ksize:滤波核大小,(width,height)。

anchor:滤波核锚点,默认为:(-1,-1)核的中心。

borderType:边界样式,一般填默认即可。

import cv2lena = cv2.imread('Lena_D.png')[::2,::2,:]img1 = cv2.boxFilter(src=lena,ksize=(3,3),normalize=1)
img2 = cv2.boxFilter(src=lena,ksize=(3,3),normalize=0)cv2.imshow('lena',lena)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)
cv2.waitKey(0)
cv2.destroyAllWindows()

三、中值滤波器 cv2.medianBlur() 

取滤波核内像素值排序的中间值。 

img = cv2.medianBlur(src=*,ksize=*)

img:目标图像。

src:原始图像。

ksize:滤波核边长,如:3、5、7等。

import cv2lena = cv2.imread('Lena_D.png')[::2,::2,:]img1 = cv2.medianBlur(src=lena,ksize=3)
img2 = cv2.medianBlur(src=lena,ksize=5)
img3 = cv2.medianBlur(src=lena,ksize=7)cv2.imshow('lena',lena)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)
cv2.imshow('img2',img3)
cv2.waitKey(0)
cv2.destroyAllWindows()

四、高斯滤波器

 滤波核内的数值符合高斯分布。\frac{1}{2\pi \sigma ^{2}}\begin{bmatrix} exp(-\frac{1}{\sigma ^{2}}) &exp(-\frac{1}{2\sigma ^{2}}) &exp(-\frac{1}{\sigma ^{2}}) \\ exp(-\frac{1}{2\sigma ^{2}})&1 &exp(-\frac{1}{2\sigma ^{2}}) \\ exp(-\frac{1}{\sigma ^{2}})& exp(-\frac{1}{2\sigma ^{2}}) & exp(-\frac{1}{\sigma ^{2}}) \end{bmatrix}

img = cv2.GaussianBlur(src=*,ksize=*,sigmaX=*,sigmaY=*,borderType=*)

img:目标图像。

src:原始图像。

ksize:高斯滤波核大小,(width,height)必须为奇数。

sigmaX、sigmaY:水平与竖直方向的标准偏差。

borderType:边界样式,一般填默认即可。

import cv2lena = cv2.imread('Lena_D.png')[::2,::2,:]img1 = cv2.GaussianBlur(src=lena,ksize=(3,3),sigmaX=0,sigmaY=0)
img2 = cv2.GaussianBlur(src=lena,ksize=(5,5),sigmaX=0,sigmaY=0)
img3 = cv2.GaussianBlur(src=lena,ksize=(7,7),sigmaX=0,sigmaY=0)cv2.imshow('lena',lena)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)
cv2.imshow('img3',img3)
cv2.waitKey(0)
cv2.destroyAllWindows()

五、自定义滤波核 cv2.filter2D() 

img = cv2.filter2D(src=*,ddepth=*,kernel=*,anchor=*,delta=*,borderType=*)

img:目标图像。

src:原始图像。

ddepth:目标图像深度,默认为:-1,与原始图像深度相同。

kernel:自定义滤波核,(width,height),Opencv 只提供了单通道矩阵。

delta:偏置项。默认为:0。

anchor:滤波核锚点,默认为:(-1,-1)核的中心。

borderType:边界样式,一般填默认即可。

import cv2
import numpy as nplena = cv2.imread('Lena_D.png')[::2,::2,:]
# 可以自行定义更复杂的滤波核
kernel_3 = np.ones((3,3),np.float32)/(3*3)
img1 = cv2.filter2D(src=lena,ddepth=-1,kernel=kernel_3)
kernel_5 = np.ones((5,5),np.float32)/(5*5)
img2 = cv2.filter2D(src=lena,ddepth=-1,kernel=kernel_5)cv2.imshow('lena',lena)
cv2.imshow('img1',img1)
cv2.imshow('img2',img2)cv2.waitKey(0)
cv2.destroyAllWindows()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/65966.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【查询函数】.NET开源ORM框架 SqlSugar 系列

目录 一、基本用法 💎 二、C#函数 🔎 三、逻辑函数 🎡 3.1 case when 3.2 IsNulll 四、时间函数 🕰️ 4.1 是否是同一天 4.2 是否是同一月 4.3 是否是同一年 4.4 是否是同一时间 4.5 在当前时间加一定时间 4.6 在当前…

二、github基础

Github基础 备用github.com网站一、用户界面-Overview(概览)1用户信息2 导航栏3 热门仓库4 贡献设置5贡献活动6搜索和筛选7自定义收藏8贡献统计9最近活动10其他链接 二、用户界面-Repositories(仓库)1 libusb_stm322 savedata3 Fi…

Elasticsearch VS Easysearch 性能测试

压测环境 虚拟机配置 使用阿里云上规格:ecs.u1-c1m4.4xlarge,PL2: 单盘 IOPS 性能上限 10 万 (适用的云盘容量范围:461GiB - 64TiB) vCPU内存 (GiB)磁盘(GB)带宽(Gbit/s)数量1664500500024 Easysearch 配置 7 节点…

Echarts+vue电商平台数据可视化——webSocket改造项目

websocket的基本使用,用于测试前端能否正常获取到后台数据 后台代码编写: const path require("path"); const fileUtils require("../utils/file_utils"); const WebSocket require("ws"); // 创建WebSocket服务端的…

jenkins修改端口以及开机自启

修改Jenkins端口 方式一:通过配置文件修改(以CentOS为例) 找到配置文件:在CentOS系统中,通常可以在/etc/sysconfig/jenkins文件中修改Jenkins的配置。如果没有这个文件,也可以查看/etc/default/jenkins&…

《Vue3实战教程》34:Vue3状态管理

如果您有疑问&#xff0c;请观看视频教程《Vue3实战教程》 状态管理​ 什么是状态管理&#xff1f;​ 理论上来说&#xff0c;每一个 Vue 组件实例都已经在“管理”它自己的响应式状态了。我们以一个简单的计数器组件为例&#xff1a; vue <script setup> import { r…

简单使用linux

1.1 Linux的组成 Linux 内核&#xff1a;内核是系统的核心&#xff0c;是运行程序和管理 像磁盘和打印机等硬件设备的核心程序。 文件系统 : 文件存放在磁盘等存储设备上的组织方法。 Linux 能支持多种目前浒的文件系统&#xff0c;如 ext4 、 FAT 、 VFAT 、 ISO9660 、 NF…

微服务のGeteWay

目录 概念&#xff1a; 三大核心&#xff1a; 工作流程&#xff1a; 9527网关如何做路由映射&#xff1a; GetWay高级特性&#xff1a; 按服务名动态路由服务&#xff1a; 断言Route Predicate Factories &#xff1a; 获取当前时区时间&#xff1a; After Route &…

idea 的 springboot项目spring-boot-devtools 自动编译 配置热部署

1&#xff0c;设置一 2&#xff0c;设置二 设置二&#xff08;旧版本&#xff09; CtrlShiftAlt/ 点击弹出框中Registry... 引入&#xff08;如果报错&#xff0c;换不同的版本&#xff09; <dependency><groupId>org.springframework.boot</groupId><a…

GitHub CLI 安装指南

GitHub CLI 是 GitHub 官方提供的命令行工具&#xff0c;可以帮助开发者方便地与 GitHub 平台进行交互&#xff0c;例如克隆仓库、提交代码、创建 Pull Request 等。 相比传统的 HTTPS 下载和操作&#xff0c;GitHub CLI 提供了以下显著的优势和特殊功能&#xff1a; GitHub …

建立一个Macos载入image的实例含界面

前言 为了方便ios程序的开发&#xff0c;有时候需要先用的Macos平台进行一些功能性的程序开发。 作为对比和参考。 1、创建一个MacOS的App 2、主界面控件的增加 添加的控件方法与ios相同&#xff0c;也是再用commandshiftL&#xff08;CtrlShiftL&#xff09;,就会弹出控件…

在CodeBlocks搭建SDL2工程构建TFT彩屏模拟器虚拟TFT彩屏幕显示

在CodeBlocks搭建SDL2工程构建TFT彩屏模拟器虚拟TFT彩屏幕显示 参考文章源码下载地址一、SDL2的创建、初始化、退出二、系统基本Tick、彩屏刷新、按键事件三、彩屏获取与设置颜色四、彩屏填充颜色及清屏五、彩屏显示中文和英文字符串六、彩屏显示数字七、彩屏初始化八、主函数测…

基于Springboot + vue实现的校园周边美食探索及分享平台

&#x1f942;(❁◡❁)您的点赞&#x1f44d;➕评论&#x1f4dd;➕收藏⭐是作者创作的最大动力&#x1f91e; &#x1f496;&#x1f4d5;&#x1f389;&#x1f525; 支持我&#xff1a;点赞&#x1f44d;收藏⭐️留言&#x1f4dd;欢迎留言讨论 &#x1f525;&#x1f525;&…

LeetCode - 初级算法 数组(删除排序数组中的重复项)

免责声明:本文来源于个人知识与公开资料,仅用于学术交流。 删除排序数组中的重复项 这篇文章讨论如何从一个非严格递增的数组 nums 中删除重复的元素,使每个元素只出现一次,并返回新数组的长度。因为数组是排序的,只要是相同的肯定是挨着的,所以我们需要遍历所有数组,然…

MVCC实现原理以及解决脏读、不可重复读、幻读问题

MVCC实现原理以及解决脏读、不可重复读、幻读问题 MVCC是什么&#xff1f;有什么作用&#xff1f;MVCC的实现原理行隐藏的字段undo log日志版本链Read View MVCC在RC下避免脏读MVCC在RC造成不可重复读、丢失修改MVCC在RR下解决不可重复读问题RR下仍然存在幻读的问题 MVCC是什么…

【leetcode100】二叉树的中序遍历

1、题目描述 给定一个二叉树的根节点 root &#xff0c;返回 它的 中序 遍历 。 示例 1&#xff1a; 输入&#xff1a;root [1,null,2,3] 输出&#xff1a;[1,3,2] 2、初始思路 2.1 思路 中序遍历的顺序是左→根→右&#xff0c;定义一个函数进行遍历 # Definition for …

租用服务器还是服务器托管:哪种方案更适合您?

随着企业对网络服务质量要求的不断提高&#xff0c;租用服务器和服务器托管是两种常见的选择&#xff0c;各自具备独特的优势和适用场景。这篇文章将从多个维度对这两种方案进行详细分析&#xff0c;帮助大家进行对比选择。 租用服务器的优劣势分析 优点 无需大额初始投入 租用…

Quartus In-System Sources and Probes Editor 的使用说明

文章目录 前言使用说明参考资料 前言 Quartus 提供了 In-System Sources and Probes Editor 调试工具&#xff0c;通过 JTAG 接口使用该工具可以驱动和采样内部节点的逻辑值。即通过 Sources 功能来驱动 FPGA 内部信号&#xff0c;通过 Probes 功能来探测内部节点的逻辑值。在…

AURIX的TASKING链接文件语法学习

链接文件中的定义&#xff1a; group (ordered, contiguous, align 4, attributesrw, run_addr 0x70005000)//mem:dsram0){select ".data.user_test_data";select "(.data|.data*)";//select "(.bss|.bss*)"; //select ".bss.…

QT----------QT Data Visualzation

实现思路&#xff1a; 配置项目&#xff1a;在 .pro 文件中添加 QT datavisualization 以引入 QT Data Visualization 模块。创建主窗口&#xff1a;使用 QMainWindow 作为主窗口&#xff0c;添加 Q3DScatter、Q3DBars 和 Q3DSurface 等三维视图组件。初始化和创建三维图表&a…