Docker 入门:如何使用 Docker 容器化 AI 项目(二)

四、将 AI 项目容器化:示例实践 - 完整的图像分类与 API 服务

让我们通过一个更完整的 AI 项目示例,展示如何将 AI 项目容器化。我们以一个基于 TensorFlow 的图像分类模型为例,演示如何将训练、推理、以及 API 服务过程容器化。

4.1 创建 AI 项目文件

首先,创建一个 Python 项目目录结构,包含以下文件:

/my-ai-project├── Dockerfile├── requirements.txt├── main.py├── model.py└── app.py
  • requirements.txt:列出项目的所有 Python 依赖。
tensorflow==2.6.0
numpy==1.19.5
matplotlib==3.4.3
flask==2.0.2
  • main.py:包含模型训练和保存的逻辑代码。
import tensorflow as tf
from tensorflow.keras.datasets import mnist# 加载数据
(x_train, y_train), (x_test, y_test) = mnist.load_data()# 数据预处理
x_train = x_train / 255.0
x_test = x_test / 255.0# 构建模型
model = tf.keras.Sequential([tf.keras.layers.Flatten(input_shape=(28, 28)),tf.keras.layers.Dense(128, activation='relu'),tf.keras.layers.Dropout(0.2),tf.keras.layers.Dense(10)
])# 编译模型
model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])# 训练模型
model.fit(x_train, y_train, epochs=5)# 评估模型
model.evaluate(x_test, y_test)# 保存模型
model.save('saved_model/my_model')
  • model.py: 包含模型加载和推理的逻辑。
import tensorflow as tf
import numpy as npdef load_model():model = tf.keras.models.load_model('saved_model/my_model')return modeldef predict(model, image):img_array = np.expand_dims(image, axis=0)predictions = model.predict(img_array)score = tf.nn.softmax(predictions[0])class_id = np.argmax(score)return class_id
  • app.py:使用 Flask 构建一个简单的 API 服务,接收图片进行预测。
from flask import Flask, request, jsonify
import numpy as np
import tensorflow as tf
from model import load_model, predict
from PIL import Image
import ioapp = Flask(__name__)
model = load_model()@app.route('/predict', methods=['POST'])
def predict_api():if 'file' not in request.files:return jsonify({'error': 'No file part'}), 400file = request.files['file']if file.filename == '':return jsonify({'error': 'No selected file'}), 400try:img = Image.open(io.BytesIO(file.read())).convert('L').resize((28, 28)) # Convert to grayscale and resizeimg_array = np.array(img) / 255.0result = predict(model, img_array)return jsonify({'prediction': int(result)})except Exception as e:return jsonify({'error': str(e)}), 500if __name__ == '__main__':app.run(host='0.0.0.0', port=5000, debug=True)

4.2 创建 Dockerfile

接下来,创建一个优化的 Dockerfile 来容器化这个项目,示例如下:

# 使用 TensorFlow 官方的 Python 3 镜像作为基础镜像, 选择更轻量级的版本
FROM tensorflow/tensorflow:2.6.0-py3# 设置工作目录
WORKDIR /app# 复制 requirements.txt
COPY requirements.txt /app/# 安装依赖, 使用 --no-cache-dir 减小镜像大小
RUN pip install --no-cache-dir -r requirements.txt# 复制项目文件到容器中
COPY . /app# 暴露 API 服务的端口
EXPOSE 5000# 运行训练脚本并保存模型
RUN python main.py# 启动 API 服务
CMD ["python", "app.py"]

Dockerfile 优化说明:

  • 基础镜像选择: 使用 tensorflow/tensorflow:2.6.0-py3tensorflow/tensorflow:2.6.0 更轻量级。如果需要 GPU 支持,可以选择 tensorflow/tensorflow:2.6.0-gpu-py3
  • .dockerignore: 可以在项目根目录下创建一个 .dockerignore 文件,排除不必要的文件或目录被复制到镜像中,例如:
.git
__pycache__
saved_model
  • 多阶段构建 (可选):如果你的项目需要编译或其他构建步骤,可以使用多阶段构建来减小最终镜像大小。例如,先在一个包含完整构建工具链的镜像中构建应用,然后将构建产物复制到一个更轻量级的运行时镜像中。

4.3 构建并运行 Docker 容器

  • 构建镜像:
docker build -t my-ai-tensorflow .
  • 启动容器并运行 API 服务:
docker run -it -p 5000:5000 my-ai-tensorflow

-p 5000:5000 将容器的 5000 端口映射到主机的 5000 端口,这样你就可以通过 http://localhost:5000 访问 API 服务了。

4.4 测试 API 服务

在这里插入图片描述

你可以使用 curl 或 Postman 等工具来测试 API 服务。例如,使用 curl 发送一个 POST 请求:

curl -X POST -F "file=@<your_image.png>" http://localhost:5000/predict

<your_image.png> 替换为你本地的一张 MNIST 手写数字图片。

五、使用 Docker Compose 编排多容器应用 (可选)

如果你的 AI 项目需要多个容器协同工作,例如数据库、Web 服务器、消息队列等,可以使用 Docker Compose 来简化多容器应用的部署和管理。

创建一个 docker-compose.yml 文件,例如:

version: '3.8'
services:web:build: .ports:- "5000:5000"depends_on:- dbdb:image: postgres:13-alpineenvironment:- POSTGRES_PASSWORD=example

这个示例定义了两个服务:webdbweb 服务使用当前目录的 Dockerfile 构建镜像,并将容器的 5000 端口映射到主机的 5000 端口。db 服务使用 PostgreSQL 数据库镜像。

使用 docker-compose up 命令启动所有服务:

docker-compose up -d

-d 表示后台运行。

六、Docker 安全性最佳实践 (简要)

  • 使用非 root 用户: 默认情况下,容器内的进程以 root 用户身份运行。为了提高安全性,可以在 Dockerfile 中创建一个非 root 用户,并使用 USER 指令切换到该用户。
  • 限制容器资源: 使用 Docker 的资源限制功能(例如 --memory--cpus)来限制容器可以使用的资源,防止容器耗尽主机资源。
  • 定期更新镜像: 及时更新基础镜像和应用程序依赖,修复已知的安全漏洞。
  • 最小化镜像: 只安装必要的软件包,避免安装不必要的组件,减小攻击面。
  • 使用安全扫描工具: 使用 Clair、Anchore 等工具扫描镜像中的安全漏洞。

七、总结

在本文中,我们介绍了如何使用 Docker 容器化 AI 项目。通过 Docker,我们能够将 AI 项目的环境和依赖打包成一个容器,从而简化了项目的部署和管理。Docker 不仅提升了开发者的效率,还确保了项目在不同环境中的一致性。

最佳实践

  • 保持镜像简洁:在 Dockerfile 中,尽量选择合适的基础镜像,避免冗余的安装和配置。
  • 多阶段构建:对于需要构建和编译的项目,可以使用 Docker 的多阶段构建来减少最终镜像的体积。
  • 数据持久化:在生产环境中,确保使用 Docker 的数据卷(Volumes)来持久化数据。
  • 优化镜像大小:通过清理不必要的文件,减小镜像的体积,提升部署效率。

附:Docker安装流程图:

在这里插入图片描述

流程图说明:

  1. 开始: 安装流程开始。
  2. 选择操作系统: 根据你的操作系统选择相应的安装步骤。
  3. Windows:
    • 访问 Docker 官网下载 Docker Desktop for Windows。
    • 启用 Hyper-V 或 WSL 2?: 选择使用 Hyper-V 或 WSL 2 作为 Docker 的后端。
      • Hyper-V: 启用 Hyper-V。
      • WSL 2 (推荐): 启用 WSL 2 (性能更好)。
    • 双击安装文件并按照向导安装。
    • 启动 Docker Desktop。
    • 验证安装: docker --version
  4. macOS:
    • 访问 Docker 官网下载 Docker Desktop for macOS。
    • 双击 .dmg 文件并将 Docker 拖入应用程序文件夹。
    • 启动 Docker。
    • 验证安装: docker --version
  5. Linux:
    • 选择 Linux 发行版: 选择你使用的 Linux 发行版 (Ubuntu 或 CentOS)。
    • Ubuntu:
      • sudo apt-get update
      • sudo apt-get install apt-transport-https ca-certificates curl software-properties-common
      • curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
      • sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu $(lsb_release -cs) stable"
      • sudo apt-get update
      • sudo apt-get install docker-ce
      • 验证安装: docker --version
    • CentOS:
      • sudo yum install -y yum-utils
      • sudo yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
      • sudo yum install docker-ce
      • sudo systemctl start docker
      • sudo systemctl enable docker (设置开机自启)
      • 验证安装: docker --version
  6. 安装完成。

关键步骤说明:

  • WSL 2 和 Hyper-V (D, E, W) 使用不同的填充色,表示这是 Windows 安装中两个重要的选项,WSL 2 通常是更好的选择。
  • Ubuntu 和 CentOS 安装步骤 分别使用蓝色和橙色填充,方便区分不同发行版的安装命令。

这个流程图清晰地展示了在不同操作系统上安装 Docker 的步骤,希望对你有所帮助!

附:AI 项目容器化流程图:

以下是一个更详细的、包含模型训练、API 服务构建以及 Docker Compose 编排的 AI 项目容器化流程图:
在这里插入图片描述

流程图说明:

  1. 开始: 项目开始。
  2. 准备 AI 项目代码: 准备好包含模型训练、推理和 API 服务 (例如 Flask 或 FastAPI) 的代码。
  3. 创建 requirements.txt: 列出项目所有 Python 依赖。
  4. 项目是否需要多容器?: 判断项目是否需要使用 Docker Compose。
    • : 创建 docker-compose.yml 文件,定义各个服务及其依赖关系。
    • : 继续创建 Dockerfile。
  5. 创建 Dockerfile: 编写 Dockerfile 文件。
  6. 选择基础镜像 FROM: 根据项目需求选择合适的基础镜像,例如 tensorflow/tensorflow:2.6.0-py3
  7. 设置工作目录 WORKDIR /app: 设置容器内的工作目录。
  8. 复制项目文件 COPY . /app: 将项目代码复制到容器中。
  9. 安装依赖 RUN pip install -r requirements.txt: 安装 requirements.txt 中列出的依赖。
  10. 项目是否包含训练步骤?:
    • : RUN python main.py 执行训练脚本并保存模型 (例如到 /app/saved_model 目录)。
    • : 跳过训练步骤。
  11. 暴露端口 EXPOSE 5000: 如果有 API 服务,暴露相应的端口。
  12. 设置启动命令 CMD [“python”, “app.py”]: 设置容器启动时执行的命令,例如启动 API 服务。
  13. 构建 Docker 镜像 docker build -t my-ai-project .: 构建 Docker 镜像。
  14. 是否使用 Docker Compose?:
    • : 使用 docker-compose up -d 命令启动所有服务。
    • : 使用 docker run -it -p 5000:5000 my-ai-project 命令运行容器,-p 参数进行端口映射。
  15. 访问 API 服务 例如: http://localhost:5000: 通过映射的端口访问 API 服务。
  16. 测试 API 服务: 使用 curl 或 Postman 等工具测试 API。
  17. 部署到生产环境: 将构建好的镜像部署到生产环境 (例如 Kubernetes 集群)。
  18. 结束: 项目部署完成。

关键步骤说明:

  • 训练步骤 (J) 使用虚线边框和不同的填充色,表示这是一个可选步骤,取决于项目中是否包含模型训练逻辑。
  • 使用 Docker Compose 启动 (O) 和直接运行容器 (Q) 使用不同的填充色,表示这是两种不同的启动方式。

这个流程图更详细地展示了 AI 项目容器化的各个步骤,并考虑了模型训练、API 服务构建和 Docker Compose 编排等情况,希望能更好地帮助你理解整个流程。

点击进入:AI 项目实战:从原理到落地
点击进入:Docker 入门:如何使用 Docker 容器化 AI 项目(一)

本文为原创内容,未经许可不得转载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/65149.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【stm32can】

can时钟 can波特率计算&#xff08;位同步内容&#xff09; ss是固定的1tq&#xff0c; pts&#xff0c;pbs1&#xff0c;pbs2是用户设定值 同步时间段的理解有误&#xff1f; 原文出处 数据帧 遥控帧

209.长度最小的子数组

力扣题目链接(opens new window) 给定一个含有 n 个正整数的数组和一个正整数 s &#xff0c;找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组&#xff0c;并返回其长度。如果不存在符合条件的子数组&#xff0c;返回 0。 示例&#xff1a; 输入&#xff1a;s 7, nums…

NLP中的神经网络基础

一&#xff1a;多层感知器模型 1&#xff1a;感知器 解释一下&#xff0c;为什么写成 wxb>0 &#xff0c;其实原本是 wx > t ,t就是阈值&#xff0c;超过这个阈值fx就为1&#xff0c;现在把t放在左边。 在感知器里面涉及到两个问题&#xff1a; 第一个&#xff0c;特征提…

week 11 - BCNF

1. More on functional dependencies (功能依赖的更多内容) Lossless decomposition (无损分解) 研究如何在分解表的过程中不丢失信息&#xff0c;也就是说&#xff0c;通过分解后的表可以无损地重建原始表。 2. BCNF (Boyce-Codd Normal Form, BCNF范式) &#xff08;1&…

golangci-lint安装与Goland集成

golangci-lint安装与Goland集成 1.golangci-lint概述2.golangci-lint安装3.Goland 中集成 golangci-lint4.golangci-lint 的使用5.排除代码检查 1.golangci-lint概述 golangci-lint是用于go语言的代码静态检查工具集 官网地址&#xff1a;golangci-lint 特性&#xff1a; 快…

GPUStack v0.4.1 单节点与多节点安装与部署指南 Docker PowerShell

Introduce GPUStack 是一个开源的 GPU 集群管理器&#xff0c;专为运行 AI 模型而设计。它以其广泛的硬件兼容性而闻名&#xff0c;支持多种品牌的 GPU&#xff0c;并能在 Apple MacBook、Windows PC 和 Linux 服务器上运行。 GPUStack支持各种AI模型&#xff0c;包括大型语言…

【Docker】部署MySQL容器

关于docker&#xff0c;Windows上使用Powershell/CMD执行指令&#xff0c;Linux系统直接使用终端执行指令。 拉取MySQL 也可以跳过拉取步骤&#xff0c;直接run&#xff0c;这样本地容器不存在的话&#xff0c;会自动拉取最新/指定的版本。 # 默认拉取最新版本 docker pull …

黑马程序员JavaWeb开发教程(前端部分) ---笔记分享

总结 此篇文章记录的内容是不全的&#xff0c;我觉得基础的部分没有记录&#xff0c;我想主要学的是此课程的后端部分&#xff0c;前端部分学校有学习过&#xff0c;我就开倍速一带而过啦&#xff0c;还有就是学校学的是Vue3和此视频讲的Vue2还是有一定区别的。希望能对大家有…

SpringCloud 系列教程:微服务的未来(二)Mybatis-Plus的条件构造器、自定义SQL、Service接口基本用法

本篇博客将深入探讨 MyBatis-Plus 的三个核心功能&#xff1a;条件构造器、自定义 SQL 和 Service 接口的基本用法。通过对这些功能的学习和掌握&#xff0c;开发者能够更加高效地使用 MyBatis-Plus 进行业务开发。 目录 前言 条件构造器 自定义SQL Service接口基本用法 总结…

知识增强式生成KAG

随着人工智能技术的不断发展&#xff0c;尤其是在自然语言处理领域&#xff0c;知识增强式生成&#xff08;KAG&#xff09;作为一种新兴的技术框架&#xff0c;正逐步脱颖而出。与其前身——检索增强式生成&#xff08;RAG&#xff09;相比&#xff0c;KAG在处理特定领域知识、…

Nginx区分PC端和移动端访问

在使用Nginx时&#xff0c;可以通过$http_user_agent变量来判断用户访问的客户端类型&#xff0c;从而提供不同的内容或服务。下面是一个基于$http_user_agent变量来判断是否为PC访问的Nginx配置示例。 1. 理解$http_user_agent变量的含义及其在Nginx中的用途 $http_user_agen…

1.监督学习(上)

一.线性回归(Linear Regression Model): 输出无限多可能的数字。 【示例1】房价预测: 【图一】 假设您想根据房屋的大小预测房屋的价格,横轴:以平方英尺为单位的房屋大小,纵轴:是以千美元为单位的房屋价格。这里的小十字字中的每一个都是一所房子,其大小和价格是最…

前端编程图表化助手!Echarts入门

Echarts-一个基于javaScript的开源可视化图表库 在日常编程中&#xff0c;我们经常会用到类似饼图、柱状图等&#xff0c;而在网页中使用原生html和css很难做到类似效果。那么作为前端工程师&#xff0c;我们如何做出来一份好看而且实用的图标呢&#xff1f; 那么接下来&…

C#WPF基础介绍/第一个WPF程序

什么是WPF WPF&#xff08;Windows Presentation Foundation&#xff09;是微软公司推出的一种用于创建窗口应用程序的界面框架。它是.NET Framework的一部分&#xff0c;提供了一套先进的用户界面设计工具和功能&#xff0c;可以实现丰富的图形、动画和多媒体效果。 WPF 使用…

FPC在智能眼镜中的应用探索【新立电子】

在智能穿戴设备领域&#xff0c;智能眼镜具有独特的便携性、交互性和功能性等特点&#xff0c;智能眼镜的设计追求轻薄、美观与高度集成化。传统刚性电路板因体积庞大、难以弯曲&#xff0c;无法满足智能眼镜的复杂结构需求&#xff0c;而FPC其轻薄、柔软、可弯曲的特性&#x…

51c大模型~合集96

我自己的原文哦~ https://blog.51cto.com/whaosoft/12930135 #SnapGen 终于等来能塞进手机的文生图模型&#xff01;十分之一体量&#xff0c;SnapGen实现百分百的效果 本文的共同一作为墨尔本大学的胡冬庭和香港科技大学的陈捷润和黄悉偈&#xff0c;完成于在 Snap 研究院…

知识图谱+大模型:打造全新智慧城市底层架构

在数字化时代&#xff0c;智慧城市的建设正迎来新一轮的变革。本文将探讨如何结合知识图谱和大模型技术&#xff0c;构建智慧城市的全新底层架构&#xff0c;以应对日益增长的数据量和复杂性&#xff0c;提升城市管理的智能化水平。 知识图谱&#xff1a;智慧城市的知识库 知识…

webrtc获取IceCandidate流程

在WebRTC(Web Real-Time Communication)中,ICECandidate是一个关键概念,它用于描述在建立点对点(P2P)连接时可以考虑的潜在通信端点。以下是关于WebRTC中ICECandidate的详细解释: 一、ICECandidate的定义 ICECandidate对象通常包含以下关键属性: foundation:用于唯一…

Unity 实现Canvas显示3D物体

新建一个UI相机&#xff0c;选择渲染层为UI 将主相机的渲染层去掉UI层 、 将Canvas的RenderMode设置为Screen Space - Camera,将RenderCamera设置为UI相机 新建3D物体的UI父物体&#xff0c;并将3D物体的层级设置为UI层 适当的放缩3DObjParent&#xff0c;让3D物体能显示出来…

“鞋履数据库”:运动鞋店产品信息管理系统

2.1 SSM框架介绍 本课题程序开发使用到的框架技术&#xff0c;英文名称缩写是SSM&#xff0c;在JavaWeb开发中使用的流行框架有SSH、SSM、SpringMVC等&#xff0c;作为一个课题程序采用SSH框架也可以&#xff0c;SSM框架也可以&#xff0c;SpringMVC也可以。SSH框架是属于重量级…