基于Qlearning强化学习的机器人路线规划matlab仿真

目录

1.算法仿真效果

2.算法涉及理论知识概要

3.MATLAB核心程序

4.完整算法代码文件获得


1.算法仿真效果

matlab2022a仿真结果如下(完整代码运行后无水印)

训练过程

测试结果

仿真操作步骤可参考程序配套的操作视频。

2.算法涉及理论知识概要

       强化学习是机器学习中的一个重要领域,它主要研究智能体(agent)如何在环境中通过不断地试错来学习最优策略(policy),以最大化长期累积奖励(reward)。在机器人路线规划问题中,机器人即为智能体,其所处的地图环境包含了起点、终点、障碍物等元素,机器人的目标是找到一条从起点到终点的最优路径,同时避免碰撞障碍物。

       Q - 值的更新公式为:

      首先需要对机器人所处的环境进行建模。将地图离散化为一个个网格单元,每个网格单元可以表示为一个状态。例如,对于一个二维平面地图,状态,其中和分别表示网格单元在和方向上的索引。障碍物所在的网格单元被标记为不可达状态,起点和终点也分别有对应的状态表示。

      动作空间可以定义为向上、向下、向左、向右移动一个网格单元。当然,根据机器人的运动能力,还可以添加如旋转等其他动作。

智能体与环境交互学习:

       在学习过程中,机器人不断地探索环境并更新 Q - table。当学习过程收敛后(即 Q - table 中的值不再有明显变化),机器人可以根据 Q - table 进行路径规划。从起点状态开始,在每个状态下选择 Q 值最大的动作,直到到达终点状态,这样得到的一系列动作序列就是规划出的最优路径(在 Q - learning 算法收敛到的近似最优解意义下)。

       Q - learning 强化学习方法与基于采样的方法相比,更注重对长期累积奖励的学习和优化。基于采样的方法在采样过程中可能会产生一些无效的采样点,而 Q - learning 算法通过学习 Q 值来引导机器人选择更有希望的动作,减少无效探索。

3.MATLAB核心程序

...............................................................
for i=1:Epechsif Emg==1a=4; % 如果处于紧急情况(emergency为1),则将动作a设置为4,从代码逻辑推测动作4可能代表向后退的动作(具体含义要结合整体代码设定来看),目的是在遇到紧急情况(比如距离障碍物过近等)时,智能体采取向后退的操作来避免碰撞,保证探索过程的安全性else% 如果不处于紧急情况(emergency为0),则进入以下分支进行动作选择操作,根据epsilon - 贪婪策略来决定是选择当前已知的最优动作还是随机选择一个动作。if rand<(1-epsilon)% 如果生成的随机数(rand函数会生成一个在0到1之间的均匀分布随机数)小于 (1 - epsilon),说明按照概率应该选择当前已知的最优动作,此时调用max函数找到动作价值矩阵Q中当前状态s_index对应的行(即当前状态下执行不同动作的价值估计值所在行)中的最大值以及其对应的列索引,将最大值对应的列索引赋值给动作变量a,即选择当前状态下价值估计最高的动作作为要执行的动作,这体现了利用已知最优策略的部分[q,a] = max(Q(State_idx,:)); else% 如果生成的随机数大于等于 (1 - epsilon),说明按照概率应该随机选择一个动作,此时调用randi函数在动作数量范围(1到Nactions)内随机生成一个整数,将其赋值给动作变量a,即随机选择一个可执行的动作,这体现了探索新动作的部分a=randi(Nactions);endend% 执行选择的动作并到达下一个状态,以下代码调用func_env函数,传入选择的动作a、当前状态s、状态类型type、当前位置location、迷宫坐标信息maze_coordinates、临界距离critical_distance以及紧急距离emergency_distance作为参数,获取的返回值分别赋值给agent_next_location、reward、next_s_type、next_state、terminal、emergency变量,用于实现智能体执行动作后的位置更新(agent_next_location)、获取执行动作后的奖励值(reward)、确定下一个状态的类型(next_s_type)、下一个状态向量(next_state)、判断是否达到终止状态(terminal)以及是否处于紧急情况(emergency)等操作,完成一次动作执行后的状态转移和相关信息更新[Loc_next,reward,tp_next,state_next,Ends,Emg]=func_env(a,s,type,location,Mapxy,distc,diste);% 更新用于绘制的智能体原点轨迹信息,每执行一次动作到达新位置后,将索引变量j的值加1,然后将智能体新位置agent_next_location中第一个点(即原点)的坐标赋值给轨迹数组trajectory的第j行,以此记录智能体在探索过程中原点位置的变化轨迹,方便后续可视化展示智能体的移动路径情况j=j+1;% 调用func_stateidx函数,传入下一个状态向量next_state以及下一个状态的类型next_s_type作为参数,获取的返回值赋值给s_index_next变量,用于确定下一个状态在Q矩阵中的索引,方便后续基于该索引对动作价值矩阵Q进行更新操作,保持状态与价值估计信息的对应关系idx_next=func_stateidx(state_next,tp_next);if a~=4 % 如果执行的动作不是紧急情况对应的动作(即不是动作4,从前面代码可知动作4可能代表向后退的紧急动作),说明是正常的探索动作,执行以下更新动作价值矩阵Q的操作,通过基于当前奖励值reward、折扣因子gamma以及下一个状态的最大价值估计值(通过max(QQ(State_idx,a)=Q(State_idx,a)+alpha*(reward+gamma*max(Q(idx_next,:))-Q(State_idx,a));end%更新状态s        = state_next;location = Loc_next;type     = tp_next;  State_idx= idx_next;if i==Epechsfigure(2)[Mapxy]=func_Map();plot(location(1,1),location(1,2),'r-o','MarkerSize',2);  hold onendendend0Z_012m

4.完整算法代码文件获得

V

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/64887.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

9 RCC使用HSE、HSI配置时钟

一、时钟树 RCC&#xff1a;reset clock control,复位和时钟控制器。HSE是外部的高速时钟信号&#xff0c;可以由有源晶振或者无源晶振提供。如果使用HSE或者HSE经过PLL倍频之后的时钟作为系统时钟SYSCLK&#xff0c;当HSE故障时候&#xff0c;不仅HSE会被关闭&#xff0c;PLL…

认识数据结构之——排序

一、 插入排序&#xff1a; 直接插入排序(以排升序为例)&#xff1a; 排序思想&#xff1a; 单趟&#xff1a;记录某个位置的值&#xff0c;一个一个和前面的值比较&#xff0c;碰到更大的就往后覆盖&#xff0c;碰到更小的或者相等的就结束&#xff0c;最后将记录的值插入到…

uniapp 微信小程序 功能入口

单行单独展示 效果图 html <view class"shopchoose flex jsb ac" click"routerTo(要跳转的页面)"><view class"flex ac"><image src"/static/dyd.png" mode"aspectFit" class"shopchooseimg"&g…

苍穹外卖-day05redis 缓存的学习

苍穹外卖-day05 课程内容 Redis入门Redis数据类型Redis常用命令在Java中操作Redis店铺营业状态设置 学习目标 了解Redis的作用和安装过程 掌握Redis常用的数据类型 掌握Redis常用命令的使用 能够使用Spring Data Redis相关API操作Redis 能够开发店铺营业状态功能代码 功能实…

Linux之系统管理

一、相关命令 筛选 grep&#xff0c;可以用来进行筛选&#xff0c;例如对目录筛选课写成 # 过滤出带serv的 ls /usr/sbin | grep serv2. 对服务的操作 2.1 centos6版本 service 服务名 start|stop|restart|status # start&#xff1a;开启 # stop&#xff1a;停止 # restart…

什么?Flutter 可能会被 SwiftUI/ArkUI 化?全新的 Flutter Roadmap

在刚刚过去的 FlutterInProduction 活动里&#xff0c;Flutter 官方除了介绍「历史进程」和「用户案例」之外&#xff0c;也着重提及了未来相关的 roadmap &#xff0c;其中就有 3.27 里的 Swift Package Manager 、 Widget 实时预览 和 Dart 与 native 平台原生语言直接互操作…

Unity录屏插件-使用Recorder录制视频

目录 1.Recorder的下载 2.Recorder面板 2.1常规录制属性 2.2录制器配置 2.2.1添加录制器 2.2.2配置Input属性 2.2.3配置 Output Format 属性 2.2.4配置 Output File 属性 3.Recorder的使用 3.1录制Game View视频 3.1.1Recorder配置与场景搭建 3.1.2开始录制 3.1.3…

Android Vendor Overlay机制

背景介绍&#xff1a; 看Android 15版本更新时&#xff0c;"Android 15 deprecates vendor overlay"。 猜想这个vendor overlay是之前用过的settings overlay&#xff0c; 不过具体是怎么回事呢&#xff1f; 目录 Vendor Overlay介绍 Vendor Overlay工作原理 Ven…

Python 绘图魔法:用turtle库开启你的编程艺术之旅

&#x1f3e0;大家好&#xff0c;我是Yui_&#xff0c;目标成为全栈工程师~&#x1f4ac; &#x1f351;如果文章知识点有错误的地方&#xff0c;请指正&#xff01;和大家一起学习&#xff0c;一起进步&#x1f440; &#x1f680;如有不懂&#xff0c;可以随时向我提问&#…

AI开发:使用支持向量机(SVM)进行文本情感分析训练 - Python

支持向量机是AI开发中最常见的一种算法。之前我们已经一起初步了解了它的概念和应用&#xff0c;今天我们用它来进行一次文本情感分析训练。 一、概念温习 支持向量机&#xff08;SVM&#xff09;是一种监督学习算法&#xff0c;广泛用于分类和回归问题。 它的核心思想是通过…

.net core在linux导出excel,System.Drawing.Common is not supported on this platform

使用框架 .NET7 导出组件 Aspose.Cells for .NET 5.3.1 asp.net core mvc 如果使用Aspose.Cells导出excel时&#xff0c;报错 &#xff1a; System.Drawing.Common is not supported on this platform 平台特定实现&#xff1a; 对于Windows平台&#xff0c;System.Drawing.C…

【Unity3D】实现可视化链式结构数据(节点数据)

关键词&#xff1a;UnityEditor、可视化节点编辑、Unity编辑器自定义窗口工具 使用Newtonsoft.Json、UnityEditor相关接口实现 主要代码&#xff1a; Handles.DrawBezier(起点&#xff0c;终点&#xff0c;起点切线向量&#xff0c;终点切线向量&#xff0c;颜色&#xff0c;n…

6UCPCI板卡设计方案:8-基于双TMS320C6678 + XC7K420T的6U CPCI Express高速数据处理平台

基于双TMS320C6678 XC7K420T的6U CPCI Express高速数据处理平台 1、板卡概述 板卡由我公司自主研发&#xff0c;基于6UCPCI架构&#xff0c;处理板包含双片TI DSP TMS320C6678芯片&#xff1b;一片Xilinx公司FPGA XC7K420T-1FFG1156 芯片&#xff1b;六个千兆网口&#xff…

Python + 深度学习从 0 到 1(01 / 99)

希望对你有帮助呀&#xff01;&#xff01;&#x1f49c;&#x1f49c; 如有更好理解的思路&#xff0c;欢迎大家留言补充 ~ 一起加油叭 &#x1f4a6; 欢迎关注、订阅专栏 【深度学习从 0 到 1】谢谢你的支持&#xff01; ⭐ 深度学习之前&#xff1a;机器学习简史 什么要了解…

丹摩|丹摩助力selenium实现大麦网抢票

丹摩&#xff5c;丹摩助力selenium实现大麦网抢票 声明&#xff1a;非广告&#xff0c;为用户体验 1.引言 在人工智能飞速发展的今天&#xff0c;丹摩智算平台&#xff08;DAMODEL&#xff09;以其卓越的AI算力服务脱颖而出&#xff0c;为开发者提供了一个简化AI开发流程的强…

企业内训|高智能数据构建、Agent研发及AI测评技术内训-吉林省某汽车厂商

吉林省某汽车厂商为提升员工在AI大模型技术方面的知识和实践能力&#xff0c;举办本次为期8天的综合培训课程。本课程分为两大部分&#xff1a;面向全体团队成员的AI大模型技术结构与行业应用&#xff0c;以及针对技术团队的高智能数据构建与Agent研发。课程内容涵盖非结构化数…

LLaMA-Factory 单卡3080*2 deepspeed zero3 微调Qwen2.5-7B-Instruct

环境安装 git clone https://gitcode.com/gh_mirrors/ll/LLaMA-Factory.gitcd LLaMA-Factorypip install -e ".[torch,metrics]"pip install deepspeed 下载模型 pip install modelscope modelscope download --model Qwen/Qwen2.5-7B-Instruct --local_dir /roo…

uniapp blob格式转换为video .mp4文件使用ffmpeg工具

前言 介绍一下这三种对象使用场景 您前端一旦涉及到文件或图片上传Q到服务器&#xff0c;就势必离不了 Blob/File /base64 三种主流的类型它们之间 互转 也成了常态 Blob - FileBlob -Base64Base64 - BlobFile-Base64Base64 _ File uniapp 上传文件 现在已获取到了blob格式的…

【Rabbitmq篇】RabbitMQ⾼级特性----持久性,发送⽅确认,重试机制

目录 一.持久化 1 .交换机持久化 2 队列持久化 3.消息持久化 测试场景 二.发送⽅确认 1 .confirm确认模式 2 return退回模式 如何保证RabbitMQ消息的可靠传输&#xff1f;&#xff08;面试重点&#xff09; 三. 重试机制 一.持久化 我们在前⾯讲了消费端处理消息时,…

深度学习之目标检测——RCNN

Selective Search 背景:事先不知道需要检测哪个类别,且候选目标存在层级关系与尺度关系 常规解决方法&#xff1a;穷举法&#xff0c;在原始图片上进行不同尺度不同大小的滑窗&#xff0c;获取每个可能的位置 弊端&#xff1a;计算量大&#xff0c;且尺度不能兼顾 Selective …