es使用knn向量检索中numCandidates和k应该如何配比更合适

在Elasticsearch(ES)中,KNN(k-最近邻)向量检索是一种高效的向量相似性搜索方法,广泛应用于推荐系统、图像搜索、自然语言处理等领域。在KNN检索中,k 和 numCandidates 是两个关键参数,它们直接影响检索的准确性和性能。合理配置这两个参数对于实现高效且准确的向量搜索至关重要。本文将基于过往的搜索经验以及互联网资料和博客,为您提供关于numCandidates和k的配比建议。

  1. 参数概述

1.1 k(最近邻数量)

•	定义:表示返回与查询向量最相近的k个文档。
•	作用:决定了最终返回结果的数量。例如,k=10表示返回10个最相似的文档。

1.2 numCandidates(候选数量)

•	定义:在进行精确相似度计算之前,KNN算法会先通过近似方法筛选出numCandidates个候选文档。
•	作用:在高维向量空间中,直接计算所有文档与查询向量的相似度计算量巨大,numCandidates通过近似算法(如HNSW)快速筛选出一部分潜在的相似文档,再从中精确计算相似度,最终选出k个最近邻。
  1. numCandidates 与 k 的配比原则

2.1 确保 numCandidates ≥ k

首先,必须确保numCandidates的值不小于k。这是因为k个最近邻需要从numCandidates个候选中选出,如果numCandidates小于k,系统将无法返回足够数量的结果,导致查询失败或返回不完整的结果。

2.2 常见的配比策略

根据行业实践和互联网资料,以下是一些常见的numCandidates与k的配比策略:
1. 固定比例法:
• 比例:numCandidates 通常设置为 k 的10倍。
• 示例:如果k=10,则numCandidates=100。
• 优点:简单易行,适用于大多数场景。
• 缺点:在某些数据分布不均或查询需求特殊的情况下,可能需要调整比例。
2. 动态调整法:
• 依据:根据数据规模、向量维度、查询性能需求动态调整numCandidates。
• 策略:
• 大规模数据:在数据量巨大时,可以适当增加numCandidates以提高召回率。
• 高维度向量:高维度向量可能导致近似算法效果下降,需要增加numCandidates。
• 性能需求:在对性能要求较高时,可以适当减少numCandidates,但需权衡准确性。
3. 经验法则:
• 小规模数据(如百万级文档):numCandidates 可以设置为k的5-10倍。
• 中等规模数据(如千万级文档):numCandidates 可以设置为k的10-20倍。
• 大规模数据(如亿级文档):numCandidates 可以设置为k的20-30倍,甚至更高,具体视硬件资源和性能需求而定。

  1. 配比策略的详细分析

3.1 数据规模的影响

•	小规模数据:
•	特点:数据量较小,向量分布较为稠密。
•	策略:numCandidates 设置为k的5-10倍。例如,k=10,numCandidates=50-100。
•	原因:较小的数据量下,较少的候选即可覆盖大部分相似文档,避免过度计算。
•	中等规模数据:
•	特点:数据量适中,向量分布较为广泛。
•	策略:numCandidates 设置为k的10-20倍。例如,k=10,numCandidates=100-200。
•	原因:中等规模的数据需要更多的候选文档以提高召回率,确保覆盖更多潜在相似文档。
•	大规模数据:
•	特点:数据量巨大,向量分布稀疏。
•	策略:numCandidates 设置为k的20-30倍,甚至更高。例如,k=10,numCandidates=200-300。
•	原因:在海量数据中,需增加候选文档数量以提高检索准确性,但需注意硬件资源和查询性能。

3.2 向量维度的影响

•	低维向量(如100维以下):
•	特点:计算效率高,相似度计算较为准确。
•	策略:可以适当减少numCandidates,如numCandidates = k的5-10倍。
•	原因:低维向量下,近似算法效果较好,较少的候选即可覆盖大部分相似文档。
•	高维向量(如300维以上):
•	特点:计算复杂度高,相似度计算不够精确。
•	策略:需要增加numCandidates,如numCandidates = k的15-25倍。
•	原因:高维向量空间中,近似算法可能漏掉部分真实相似文档,需要更多候选来弥补。

3.3 查询性能需求

•	高性能需求:
•	策略:减少numCandidates,如numCandidates = k的5-10倍。
•	原因:减少候选数量可以降低查询延迟,提高响应速度。
•	缺点:可能牺牲一定的召回率和准确性。
•	高准确性需求:
•	策略:增加numCandidates,如numCandidates = k的20-30倍。
•	原因:更多的候选文档可以提高召回率和检索准确性。
•	缺点:增加查询延迟和资源消耗。
  1. 实践中的配比建议

基于上述分析,以下是一些实际应用中的配比建议:

4.1 推荐起始点

•	k 设置:根据业务需求确定需要返回的最近邻数量,常见值为10、20、50。
•	numCandidates 设置:
•	小规模数据:numCandidates = k * 10。例如,k=10,numCandidates=100。
•	中等规模数据:numCandidates = k * 15。例如,k=10,numCandidates=150。
•	大规模数据:numCandidates = k * 20。例如,k=10,numCandidates=200。

4.2 调优策略

1.	性能与准确性的平衡:
•	测试:在实际数据和查询场景下,进行A/B测试,观察不同numCandidates与k的组合对性能和准确性的影响。
•	监控:使用Elasticsearch的监控工具(如Kibana)监控查询性能,调整参数以达到最佳平衡。
2.	动态调整:
•	根据业务负载和实时需求,动态调整numCandidates。例如,在高峰期降低numCandidates以保证系统稳定,在低负载期增加numCandidates以提高检索准确性。
3.	多维度优化:
•	索引优化:优化向量索引结构(如HNSW参数调优),提高近似搜索的效率和准确性。
•	硬件资源:确保Elasticsearch集群具备足够的计算资源和内存,以支持高numCandidates的查询需求。
  1. 示例代码

以下是一个基于Java Elasticsearch客户端 (co.elastic.clients) 的KNN查询示例,展示了如何合理配置numCandidates和k:

import co.elastic.clients.elasticsearch.ElasticsearchClient;
import co.elastic.clients.elasticsearch.core.SearchRequest;
import co.elastic.clients.elasticsearch.core.SearchResponse;
import co.elastic.clients.elasticsearch._types.query_dsl.KnnQuery;
import co.elastic.clients.elasticsearch._types.query_dsl.Query;
import co.elastic.clients.elasticsearch.core.search.Hit;
import java.io.IOException;
import java.util.List;public class KnnSearchExample {public static void main(String[] args) {ElasticsearchClient client = ElasticsearchClientFactory.createClient();try {int k = 10; // 设置返回的最近邻数量int numCandidates = 100; // 设置候选数量,确保 >= k// 构建 KNN 查询KnnQuery knnQuery = KnnQuery.of(kq -> kq.field("vector_field") // 替换为您的向量字段名.queryVector(new float[]{0.1f, 0.2f, 0.3f}) // 替换为查询向量.k(k) // 设置返回最近的k个结果.numCandidates(numCandidates) // 设置候选数量);// 构建 SearchRequestSearchRequest searchRequest = SearchRequest.of(sr -> sr.index("my_index") // 替换为您的索引名.query(q -> q.knn(knnQuery)).size(k) // 返回k个结果);// 执行搜索SearchResponse<Object> searchResponse = client.search(searchRequest, Object.class);// 处理搜索结果List<Hit<Object>> hits = searchResponse.hits().hits();for (Hit<Object> hit : hits) {System.out.println(hit.source());}} catch (IOException e) {// 捕获并处理异常System.err.println("KNN 查询失败:" + e.getMessage());e.printStackTrace();} finally {try {client._transport().close();} catch (IOException e) {e.printStackTrace();}}}
}

关键步骤说明:
1. 参数设置:
• k:设定需要返回的最近邻数量。
• numCandidates:设定候选数量,确保其值至少为k。
2. 构建KNN查询:
• 使用KnnQuery.of方法,设置field、queryVector、k和numCandidates。
3. 执行搜索请求:
• 通过client.search方法发送搜索请求,并处理返回的结果。
4. 异常处理:
• 捕获并打印异常信息,便于调试和问题定位。
5. 资源管理:
• 在查询完成后,关闭Elasticsearch客户端传输,释放资源。

  1. 参考资料

    • Elasticsearch 官方文档 - KNN 搜索
    • HNSW 算法简介
    • Elasticsearch KNN 插件
    • Elastic Blog - Efficient KNN Searches with HNSW

  2. 总结

在Elasticsearch的KNN向量检索中,合理配置numCandidates和k参数是确保查询准确性和性能的关键。通常,numCandidates应设置为k的10倍左右,但具体比例需要根据数据规模、向量维度和性能需求进行调整。通过不断测试和优化,结合业务需求,可以找到最适合您应用场景的参数配比,从而实现高效且准确的向量搜索。

如果在实际配置和优化过程中遇到更多问题,欢迎继续提问,我将为您提供进一步的支持和建议!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/64524.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

记录一下自己对网络安全法的笔记

仅记录一下自己对网络安全法的笔记 文章来源&#xff08;https://www.cac.gov.cn/2016-11/07/c_1119867116_2.htm&#xff09;&#xff08;2016年11月7日第十二届全国人民代表大会常务委员会第二十四次会议通过&#xff09;该法自2017年6月1日起施行。《网络安全法》是我国第一…

mvc如何给action传递参数

步骤(常规方法) 新建一个控制器--LarsController.cs using Microsoft.AspNetCore.Mvc; namespace Blog.Controller; public class LarsController:Controller -----继承 {public IActionResult Index(){return View();} }获取id // program.cs中默认值是idpublic IAction…

Java爬虫️ 使用Jsoup库进行API请求有什么优势?

在Java的世界里&#xff0c;Jsoup库以其强大的HTML解析能力而闻名。它不仅仅是一个简单的解析器&#xff0c;更是一个功能齐全的工具箱&#xff0c;为开发者提供了从网页抓取到数据处理的一站式解决方案。本文将深入探讨使用Jsoup库进行API请求的优势&#xff0c;并提供代码示例…

NX二次开发通过内部函数获取面的面积MW_face_ask_area

获取动态库libmold.dll的路径 void TcharToChar(const TCHAR* tchar, char* _char) {int iLength; #if UNICODE//获取字节长度 iLength WideCharToMultiByte(CP_ACP, 0, tchar, -1, NULL, 0, NULL, NULL);//将tchar值赋给_char WideCharToMultiByte(CP_ACP, 0, tchar, -…

2024.12.19总结

今天跑了数据采集和端口扫描&#xff0c;对于容器化和虚拟机的概念不是很理解。然后是北向接口文档&#xff0c;在跟其他人交流时&#xff0c;问原理把我给问住了。在安全这块&#xff0c;要学的的东西很多&#xff0c;确实不是三五个月就能搞定的事。 如今&#xff0c;我要做…

同态加密算法详解及Python实现

目录 同态加密算法详解及Python实现第一部分:同态加密概述与原理1.1 什么是同态加密?同态加密的定义:1.2 同态加密的分类1.3 同态加密的优势与挑战优势挑战第二部分:常见同态加密算法及其应用场景2.1 RSA同态加密支持操作应用场景2.2 Paillier加密支持操作应用场景2.3 Gent…

【WRF教程第四期】WRF 初始化概述:以4.5版本为例

WRF 初始化&#xff08;WRF Initialization&#xff09; Building Initialization Programs编译方式 理想案例初始化&#xff08;Initialization for Idealized Cases&#xff09;理想化案例的输入可用的理想化案例 现实案例初始化&#xff08;Initialization for Real Data Ca…

测试工程师八股文04|计算机网络 和 其他

一、计算机网络 1、http和https的区别 HTTP和HTTPS是用于在互联网上传输数据的协议。它们都是应用层协议&#xff0c;建立在TCP/IP协议栈之上&#xff0c;用于客户端&#xff08;如浏览器&#xff09;和服务器之间的通信。 ①http和https的主要区别在于安全性。http是一种明…

Firewalld 防火墙全面解析与配置指南

在当今网络环境中,网络安全至关重要,而防火墙作为网络安全的关键防线,在Linux系统中扮演着极其重要的角色。本文将深入探讨Firewalld防火墙,涵盖其基础概念,优势特点,配置方法等多面内容,为您提供全面的Firewalld防火墙知识体系 一,Linux防火墙基础 (一) 防火墙内核…

【C++】inline函数(内联函数)

文章目录 前言一、宏函数的缺陷二、inline函数1.inline函数的展开规则2.inline的设计分析3.inline函数不建议声明和定义分离 前言 C程序频繁调用函数会使代码效率降低&#xff0c;因为创建函数栈帧需要消耗时间。于是C语言引入宏函数的概念&#xff0c;使用宏函数来替代一些功能…

.Net_比对Json文件是否一致

简介 该方法用于比较两个Json文件是否完全一致&#xff0c;仅考虑内容若两个文件中的内容只是顺序不一致&#xff0c;内容是一样的&#xff0c;那么也代表这两个文件是相等的 实现代码 调用 using CompareJsonFiles;Console.WriteLine(" 输入信息 ");Console.WriteL…

Android OpenGLES2.0开发(九):图片滤镜

“当你改变想法的时候&#xff0c;记得也要改变你的世界。”——诺曼文森特皮尔 Android OpenGLES开发&#xff1a;EGL环境搭建Android OpenGLES2.0开发&#xff08;一&#xff09;&#xff1a;艰难的开始Android OpenGLES2.0开发&#xff08;二&#xff09;&#xff1a;环境搭…

易语言OCR证件照文字识别

一.引言 文字识别&#xff0c;也称为光学字符识别&#xff08;Optical Character Recognition, OCR&#xff09;&#xff0c;是一种将不同形式的文档&#xff08;如扫描的纸质文档、PDF文件或数字相机拍摄的图片&#xff09;中的文字转换成可编辑和可搜索的数据的技术。随着技…

指针练习题15道【C语言】

1.利用指针变量将一个数组中的数据反向输出。 声明&#xff1a; void work1(int *, int); // 声明反向遍历 void work1_1(int *, int); // 声明正向遍历实现&#xff1a; // 利用指针变量将一个数组中的数据反向输出&#xff0c;反向遍历 void work1( int *p,int len) {p (…

单节点calico性能优化

在单节点上部署calicov3273后&#xff0c;发现资源占用 修改calico以下配置是资源消耗降低 1、因为是单节点&#xff0c;没有跨节点pod网段组网需要&#xff0c;禁用overlay方式网络(ipip&#xff0c;vxlan),使用route方式网络 配置calico-node的环境变量 CALICO_IPV4POOL_I…

openjdk17 从C++视角看 String的intern的jni方法JVM_InternString方法被gcc编译器连接

symbols-unix 文件部分内容 JVM_IHashCode JVM_InitClassName JVM_InitStackTraceElement JVM_InitStackTraceElementArray JVM_InitializeFromArchive JVM_InternString 要理解在 symbols-unix 文件中包含 JVM_InternString 方法的原因&#xff0c;我们需要从构建过程、符号…

在 Spring Boot 3 中实现基于角色的访问控制

基于角色的访问控制 (RBAC) 是一种有价值的访问控制模型,可增强安全性、简化访问管理并提高效率。它在管理资源访问对安全和运营至关重要的复杂环境中尤其有益。 我们将做什么 我们有一个包含公共路由和受限路由的 Web API。受限路由需要数据库中用户的有效 JWT。 现在用户…

K8s HPA的常用功能介绍

Kubernetes 的 Horizontal Pod Autoscaler (HPA) 是一种自动扩展功能&#xff0c;用于根据资源使用情况&#xff08;如 CPU、内存等&#xff09;或自定义指标&#xff0c;动态调整 Pod 的副本数量&#xff0c;从而保证应用的性能和资源利用率。 以下是 HPA 的常用功能介绍&…

电子系统中用于降噪的接地

当接地系统中存在EMI、RFI 或由焊机、变速驱动器、电器等引起的电脉冲等干扰时&#xff0c;它们会在中性线和接地之间产生共模噪声&#xff0c;可能会影响电子设备。 国家电气规范 (NEC) 允许安装隔离接地插座 (IG)&#xff0c;即磁轭和接地端子之间没有连接。轭是插座后面的金…

SmartX分享:SMTX ZBS 中 RDMA 技术简介

目录 背景如何实现存储网络是什么TCP/IPRDMARDMA 工作原理RDMA 的实现方案 ZBS 支持 RDMA 的要求 参考 背景 我们清楚&#xff0c;分布式存储将利用网络作不同设备的互联。最基础的如TCP/IP的IP SAN&#xff0c;进阶的有FC SAN、IB等等。 SmartX 支持 10G以上的TCP/IP网络作为…