使用YOLO系列txt目标检测标签的滑窗切割:批量处理图像和标签的实用工具

使用YOLO系列txt目标检测标签的滑窗切割:批量处理图像和标签的实用工具

    • 使用YOLO的TXT目标检测标签的滑窗切割:批量处理图像和标签的实用工具
      • 背景
      • 1. 代码概述
      • 2. 滑窗切割算法原理
        • 滑窗切割步骤:
        • 示例:
      • 3. **代码实现**
        • 1. **加载标签**
        • 2. **切割标签**
        • 3. **主函数**
      • 4. **如何使用该工具**
      • 4. **完整代码**

使用YOLO的TXT目标检测标签的滑窗切割:批量处理图像和标签的实用工具

背景

在计算机视觉领域,目标检测(Object Detection)是一个非常重要的任务。随着 YOLO(You Only Look Once)系列模型的普及,目标检测模型已经被广泛应用于各种实际场景中。对于目标检测任务,训练模型所需的标注数据至关重要。

当我们处理大规模图像数据集时,尤其是在图像的尺寸远大于模型输入尺寸时,往往需要使用 滑窗切割(Sliding Window)技术,将大图像分割成多个小块进行处理。这一过程不仅可以减小每次训练所需的计算资源,还能增强模型的鲁棒性。

本博客将介绍如何使用 YOLO 的TXT目标检测标签格式 对大图像进行滑窗切割,并确保标签的正确性。我们将逐步阐述该代码的工作原理、使用方法及其在目标检测中的实际意义。

1. 代码概述

该代码实现了对大图像及其对应标签的 滑窗切割,并确保切割后的标签正确地被裁剪并保存。它通过对图像和标签的逐块切割,将大图像分割成多个较小的图像块,同时调整标签的位置和大小,以符合新的图像尺寸。

主要步骤如下:

  1. 加载图像和标签:读取图片和标签文件,确保标签与图像对应。
  2. 滑窗切割:以给定的窗口大小和步长,对图像进行滑窗切割。
  3. 裁剪标签:对于每个切割窗口,检查标签是否位于窗口内,如果位于窗口内,调整标签坐标,并确保标签归一化。
  4. 保存切割后的图像和标签:将切割后的图像和标签保存到新的文件夹中。

2. 滑窗切割算法原理

滑窗切割是计算机视觉中常用的技术,通常用于:

  • 大图像分块:当图像尺寸过大时,模型输入尺寸无法处理整个图像,可以将其切割成小块进行逐块处理。
  • 多尺度检测:不同尺度的物体需要不同大小的窗口来检测。通过滑窗切割,能够在多个尺度上执行目标检测任务。
滑窗切割步骤:
  1. 指定窗口大小和步长:窗口大小和步长决定了滑窗的密集程度。步长越小,生成的窗口越多,计算量越大。窗口大小决定了每个块的输入尺寸。

  2. 标签裁剪:标签的裁剪是根据目标与滑窗的交集来进行的。每个标签会被裁剪到窗口内,并且坐标会被重新归一化到窗口的尺寸。

示例:
  • 窗口大小:640x640像素。
  • 横向步长:301像素。
  • 纵向步长:180像素。

对于每个标签,代码会检查它是否位于当前滑窗内,如果是,标签的位置和尺寸会被重新计算并保存。

3. 代码实现

1. 加载标签
def load_labels(label_file):"""加载YOLO的标签文件"""labels = []with open(label_file, 'r') as f:for line in f:parts = line.strip().split()cls = int(parts[0])  # 类别x_center, y_center, w, h = map(float, parts[1:])labels.append((cls, x_center, y_center, w, h))return labels

这段代码用于读取每个标签文件,并将其转换为包含类别和坐标的格式,方便后续处理。

2. 切割标签
def save_cut_labels(window_x, window_y, window_size, img_width, img_height, labels):"""根据滑窗切割标签,并确保标签正确裁剪"""new_labels = []for cls, x_center, y_center, w, h in labels:# 将归一化坐标转换为像素坐标x_center_px = x_center * img_widthy_center_px = y_center * img_heightw_px = w * img_widthh_px = h * img_height# 计算标签与当前窗口的交集区域intersection_x1 = max(x_center_px - w_px / 2, window_x)intersection_y1 = max(y_center_px - h_px / 2, window_y)intersection_x2 = min(x_center_px + w_px / 2, window_x + window_size)intersection_y2 = min(y_center_px + h_px / 2, window_y + window_size)# 如果标签和窗口相交if intersection_x1 < intersection_x2 and intersection_y1 < intersection_y2:# 计算交集区域的宽高和中心坐标intersection_w = intersection_x2 - intersection_x1intersection_h = intersection_y2 - intersection_y1intersection_x_center = (intersection_x1 + intersection_x2) / 2intersection_y_center = (intersection_y1 + intersection_y2) / 2# 将交集区域的坐标归一化normalized_x_center = (intersection_x_center - window_x) / window_sizenormalized_y_center = (intersection_y_center - window_y) / window_sizenormalized_w = intersection_w / window_sizenormalized_h = intersection_h / window_size# 生成新的标签new_labels.append(f"{cls} {normalized_x_center} {normalized_y_center} {normalized_w} {normalized_h}")return new_labels

该函数根据当前窗口的位置,裁剪标签,并将裁剪后的标签归一化到当前窗口大小。

3. 主函数
def main():image_folder = 'images'  # 输入图片文件夹label_folder = 'labels'  # 输入标签文件夹output_image_folder = 'output_images'output_label_folder = 'output_labels'if not os.path.exists(output_image_folder):os.makedirs(output_image_folder)if not os.path.exists(output_label_folder):os.makedirs(output_label_folder)image_files = sorted(os.listdir(image_folder))label_files = sorted(os.listdir(label_folder))window_size = 640  # 滑窗大小step_x = 301  # 横向步长step_y = 180  # 纵向步长# 遍历所有图片和标签文件for image_file, label_file in zip(image_files, label_files):# 读取图片image_path = os.path.join(image_folder, image_file)image = cv2.imread(image_path)img_height, img_width, _ = image.shape# 读取对应的标签label_path = os.path.join(label_folder, label_file)labels = load_labels(label_path)# 计算横向和纵向可以切割的窗口数量num_windows_x = (img_width - window_size) // step_x + 1num_windows_y = (img_height - window_size) // step_y + 1# 遍历所有切割窗口for i in range(num_windows_x):for j in range(num_windows_y):window_x = i * step_xwindow_y = j * step_y# 获取当前窗口内的标签windowed_labels = save_cut_labels(window_x, window_y, window_size, img_width, img_height, labels)if windowed_labels:  # 如果窗口内有标签# 保存切割后的图片windowed_image = image[window_y:window_y + window_size, window_x:window_x + window_size]output_image_path = os.path.join(output_image_folder, f"{os.path.splitext(image_file)[0]}_window_{i}_{j}.jpg")cv2.imwrite(output_image_path, windowed_image)# 保存切割后的标签output_label_path = os.path.join(output_label_folder, f"{os.path.splitext(label_file)[0]}_window_{i}_{j}.txt")with open(output_label_path, 'w') as f:for label in windowed_labels:f.write(label + '\n')

4. 如何使用该工具

  1. 准备工作

    • 将你的图片和标签放在 images/labels/ 文件夹中。
    • 确保标签格式为 YOLOv5 格式,即每行包含 class_id x_center y_center width height(所有值均为归一化形式)。
  2. 运行脚本

    • 运行上述代码,程序将自动读取图片和标签,进行滑窗切割,并将每个切割后的图像和标签保存到新的文件夹中。
  3. 输出结果

    • 切割后的图像会保存在 output_images/ 文件夹中。
    • 切割后的标签会保存在 output_labels/ 文件夹中,标签内容与原标签一致,只是经过裁

4. 完整代码

import os
import cv2def load_labels(label_path):"""加载YOLOv5标签文件"""labels = []with open(label_path, 'r') as f:for line in f.readlines():parts = line.strip().split()cls = int(parts[0])  # 类别x_center = float(parts[1])  # x中心y_center = float(parts[2])  # y中心w = float(parts[3])  # 宽度h = float(parts[4])  # 高度labels.append([cls, x_center, y_center, w, h])return labelsdef save_cut_labels(window_x, window_y, window_size, img_width, img_height, labels):"""根据滑窗切割标签,并确保标签正确裁剪"""new_labels = []for cls, x_center, y_center, w, h in labels:# 将归一化坐标转换为像素坐标x_center_px = x_center * img_widthy_center_px = y_center * img_heightw_px = w * img_widthh_px = h * img_height# 计算标签与当前窗口的交集区域intersection_x1 = max(x_center_px - w_px / 2, window_x)intersection_y1 = max(y_center_px - h_px / 2, window_y)intersection_x2 = min(x_center_px + w_px / 2, window_x + window_size)intersection_y2 = min(y_center_px + h_px / 2, window_y + window_size)# 如果标签和窗口相交if intersection_x1 < intersection_x2 and intersection_y1 < intersection_y2:# 计算交集区域的宽高和中心坐标intersection_w = intersection_x2 - intersection_x1intersection_h = intersection_y2 - intersection_y1intersection_x_center = (intersection_x1 + intersection_x2) / 2intersection_y_center = (intersection_y1 + intersection_y2) / 2# 将交集区域的坐标归一化normalized_x_center = (intersection_x_center - window_x) / window_sizenormalized_y_center = (intersection_y_center - window_y) / window_sizenormalized_w = intersection_w / window_sizenormalized_h = intersection_h / window_size# 生成新的标签new_labels.append(f"{cls} {normalized_x_center} {normalized_y_center} {normalized_w} {normalized_h}")# 如果没有标签,返回空列表return new_labelsdef main():image_folder = 'images'  # 输入图片文件夹label_folder = 'labels'  # 输入标签文件夹output_image_folder = 'output_images'output_label_folder = 'output_labels'if not os.path.exists(output_image_folder):os.makedirs(output_image_folder)if not os.path.exists(output_label_folder):os.makedirs(output_label_folder)image_files = sorted(os.listdir(image_folder))label_files = sorted(os.listdir(label_folder))window_size = 640  # 滑窗大小step_x = 301  # 横向步长step_y = 180  # 纵向步长# 遍历所有图片和标签文件for image_file, label_file in zip(image_files, label_files):# 读取图片image_path = os.path.join(image_folder, image_file)image = cv2.imread(image_path)img_height, img_width, _ = image.shape# 读取对应的标签label_path = os.path.join(label_folder, label_file)labels = load_labels(label_path)# 计算横向和纵向可以切割的窗口数量num_windows_x = (img_width - window_size) // step_x + 1num_windows_y = (img_height - window_size) // step_y + 1# 遍历所有切割窗口for i in range(num_windows_x):for j in range(num_windows_y):window_x = i * step_xwindow_y = j * step_y# 获取当前窗口内的标签windowed_labels = save_cut_labels(window_x, window_y, window_size, img_width, img_height, labels)# 如果标签列表为空,说明此窗口没有标签,跳过该窗口if not windowed_labels:continue# 保存切割后的图片windowed_image = image[window_y:window_y + window_size, window_x:window_x + window_size]output_image_path = os.path.join(output_image_folder, f"{os.path.splitext(image_file)[0]}_window_{i}_{j}.jpg")cv2.imwrite(output_image_path, windowed_image)# 保存切割后的标签output_label_path = os.path.join(output_label_folder, f"{os.path.splitext(label_file)[0]}_window_{i}_{j}.txt")with open(output_label_path, 'w') as f:for label in windowed_labels:f.write(label + '\n')if __name__ == "__main__":main()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/63088.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java ArrayList 详解

Java ArrayList 详解 ArrayList 是 Java 集合框架&#xff08;Collection Framework&#xff09;中最常用的类之一&#xff0c;是一种基于动态数组的数据结构&#xff0c;属于 List 接口的实现类。它允许存储重复的元素&#xff0c;有序&#xff0c;支持随机访问&#xff0c;且…

springboot/ssm线上教育培训办公系统Java代码web项目在线课程作业源码

springboot/ssm线上教育培训办公系统Java代码web项目在线课程作业源码 基于springboot(可改ssm)htmlvue项目 开发语言&#xff1a;Java 框架&#xff1a;springboot/可改ssm vue JDK版本&#xff1a;JDK1.8&#xff08;或11&#xff09; 服务器&#xff1a;tomcat 数据库&…

Rust学习笔记_13——枚举

Rust学习笔记_10——守卫 Rust学习笔记_11——函数 Rust学习笔记_12——闭包 枚举 文章目录 枚举1. 定义1.1 无值变体1.2 有值变体1.3 枚举与泛型的结合 2. 使用2.1 和匹配模式一起使用2.2 枚举作为类型别名 3. 常用枚举类型 在Rust编程语言中&#xff0c;枚举&#xff08;enum…

容器运行应用及Docker命令

文章目录 一、使用容器运行Nginx应用1_使用docker run命令运行Nginx应用1 观察下载容器镜像过程2 观察容器运行情况 2_访问容器中运行的Nginx服务1 确认容器IP地址2 容器网络说明3 使用curl命令访问 二、Docker命令1_Docker命令获取帮助方法2_Docker官网提供的命令说明3_docker…

深入浅出:php-学习入门全攻略

文章目录 1. 为什么选择 PHP&#xff1f;2. 安装 PHP 环境2.1 Windows 系统安装步骤 1&#xff1a;下载 PHP步骤 2&#xff1a;解压并配置步骤 3&#xff1a;配置环境变量步骤 4&#xff1a;验证安装 2.2 Mac 系统安装步骤 1&#xff1a;使用 Homebrew 安装步骤 2&#xff1a;验…

【热门主题】000075 探索嵌入式硬件设计的奥秘

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;今天给大家分享一篇文章&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&#xff01;创作不易&#xff0c;如果能帮助到大家或者给大家一些灵感和启发&#xff0c;欢迎收藏关注哦 &#x1f495; 目录 【热…

数据分析(一): 掌握STDF 掌握金钥匙-码农切入半导体的捷径

中国的半导体行业必然崛起&#xff01;看清这个大势&#xff0c;就会有很多机会。 今天&#xff0c;我们一起来了解一下半导体行业的一朵金花&#xff1a;STDF。 实际上这只是一种文件格式&#xff0c;但是当你熟练掌握解析这种文件的时候&#xff0c;你就已经打开在这个基础…

PostgreSQLt二进制安装-contos7

1、安装依赖 yum install -y gcc readline readline-devel zlib-devel net-tools perl wget numactl libicu-devel bison flex openssl-devel pam pam-devel libxml2 libxml2-devel libxslt libxslt-devel openldap openldap-devel 2、创建目录 mkdir -p /data/postgresql/{…

Latex转word(docx)或者说PDF转word 一个相对靠谱的方式

0. 前言 投文章过程中总会有各种各样的要求&#xff0c;其中提供word格式的手稿往往是令我头疼的一件事。尤其在多公式的文章中&#xff0c;其中公式转换是一个头疼的地方&#xff0c;还有很多图表&#xff0c;格式等等&#xff0c;想想就让人头疼欲裂。实践中摸索出一条相对靠…

AWS创建ec2实例并连接成功

aws创建ec2实例并连接 aws创建ec2并连接 1.ec2创建前准备 首先创建一个VPC隔离云资源并且有公有子网 2.创建EC2实例 1.启动新实例或者创建实例 2.创建实例名 3.选择AMI使用linux(HVM) 4.选择实例类型 5.创建密钥对下载到本地并填入密钥对名称 6.选择自己创建的VPC和公有子网…

“放弃Redis Desktop Manager使用Redis Insight”:日常使用教程(Redis可视化工具)

文章目录 更新Redis Insight连接页面基础解释自动更新key汉化暂时没有找到方法&#xff0c; Redis Desktop Manager在连接上右键在数据库上右键在key上右键1、添加连接2、key过期时间 参考文章 更新 (TωT)&#xff89;~~~ β&#xff59;ё β&#xff59;ё~ 现在在维护另一…

如何用注册机破解Reflexive游戏

相信有许多小朋友&#xff08;像我以前一样&#xff09;已经迫不及待地准备准备对浩瀚的、像三星堆一般的Reflexive游戏合集进行考古挖掘工作了。不巧的是&#xff0c;打开游戏之后发现常常提示要付费才能解锁完整版。 一、下载注册机与破解文件 首先&#xff0c;在我的永硕网…

Java 多线程探秘:从线程池到死锁的奇幻之旅

1.简述一下你对线程池的理解 线程池是一种多线程处理形式&#xff0c;处理过程中将任务分为若干个线程&#xff0c;使用线程池可以有效地管理并发线程的数量&#xff0c;提高程序的响应速度和资源利用率。以下是关于线程池的一些关键点&#xff1a; 预创建线程&#xff1a;线…

一万台服务器用saltstack还是ansible?

一万台服务器用saltstack还是ansible? 选择使用 SaltStack 还是 Ansible 来管理一万台服务器&#xff0c;取决于几个关键因素&#xff0c;如性能、扩展性、易用性、配置管理需求和团队的熟悉度。以下是两者的对比分析&#xff0c;帮助你做出决策&#xff1a; SaltStack&…

PDF文件页面转换成图片怎么弄-免费PDF编辑工具分享

>>更多PDF文件处理应用技巧请前往 96缔盟PDF处理器 主页 查阅&#xff01; —————————————————————————————————————— 序言 我之前的文章也有介绍过如何使用96缔盟PDF处理器对PDF文件转换成图片&#xff0c;但是当时是使用DMPDFU…

从 scratch开始构建一个最小化的 Hello World Docker 镜像-docker的镜像源头

在这篇文章中&#xff0c;我们将学习如何从零开始构建一个最小化的 Docker 镜像&#xff0c;基于 scratch 镜像&#xff0c;并在其中运行一个简单的 “Hello World” 程序。 Scratch 是一个空白的基础镜像&#xff0c;适用于构建轻量化、独立的容器。由于 scratch 不包含任何系…

OpenHarmony-4.GPIO驱动

GPIO 1.功能简介 GPIO&#xff08;General-purpose input/output&#xff09;即通用型输入输出。GPIO又俗称为I/O口&#xff0c;I指的是输入(in&#xff09;&#xff0c;O指的是输出&#xff08;out&#xff09;。可以通过软件来控制其输入和输出&#xff0c;即I/O控制。通常&…

网络安全xss和csrf

xss和csrf介绍 1.xss 跨站脚本攻击&#xff0c;csrf 跨站请求伪造 2.xss 浏览器向服务器请求时注入脚本攻击 分为三种类型&#xff1a;反射性&#xff08;非持久型&#xff09;、存储型&#xff08;持久型&#xff09;、基于dom 防范手段&#xff1a;输入过滤、输出过滤、加ht…

1、操控UART寄存器实现输出功能

在这一章里&#xff0c;重点需要了解如何通过寄存器操控GPIO、UART&#xff0c;使得MCU通过UART总线输出字符&#xff0c;实现打印功能。 一、GPIO相关寄存器 如果开发板上引脚资源够用的话&#xff0c;并不需要额外配置GPIO的复用功能。但如果想要复用GPIO为某一路UART的功能…

leetcode 1843 可疑银行账户(postgresql)

需求 表: Accounts -------------------- | Column Name | Type | -------------------- | account_id | int | | max_income | int | -------------------- account_id 是表主键。 每行包含一个银行账户每月最大收入的信息。 表: Transactions ------------------------ |…