Django实现智能问答助手-数据库方式读取问题和答案

扩展

  1. 增加问答数据库,通过 Django Admin 添加问题和答案。
  2. 实现更复杂的问答逻辑,比如使用自然语言处理(NLP)库。
  3. 使用前端框架(如 Bootstrap)增强用户界面

1.注册模型到 Django Admin(admin.py)

在应用目录下的admin.py文件中,注册QuestionAnswer模型,使得可以在 Django Admin 界面中对其进行管理操作,代码如下:

from django.contrib import admin
from. import models
# 注册QuestionAnswer模型,使得可以在 Django Admin 界面中对其进行管理操作
# Django 就知道要在 Admin 后台中显示QuestionAnswer模型,并且可以进行添加、编辑、删除等常规操作了
admin.site.register(models.QuestionAnswer)

通过以上代码,Django 就知道要在 Admin 后台中显示QuestionAnswer模型,并且可以进行添加、编辑、删除等常规操作了。

2. 数据库迁移

完成模型定义和注册后,需要进行数据库迁移,让 Django 根据模型创建相应的数据库表结构。打开命令行,进入项目根目录(包含manage.py文件的目录),依次执行以下命令:

python manage.py makemigrations
python manage.py migrate
  • makemigrations命令会根据模型的定义生成迁移文件,它会检测模型的变化并生成相应的脚本,告诉 Django 要对数据库做哪些改变。
  • migrate命令则是将这些迁移脚本实际应用到数据库中,创建或更新对应的表结构。

3. 完善视图逻辑(可能在views.py中)

之前的视图函数可以进一步优化,例如更好地处理可能出现的错误情况等,以下是优化后的示例(在views.py中):

from django.shortcuts import render
from.models import QuestionAnswerdef home(request):if request.method == 'POST':user_question = request.POST.get('question')if user_question:# 这里可以实现简单的匹配逻辑,优化了判断,避免空查询answer = QuestionAnswer.objects.filter(question__icontains=user_question).first()if answer:response = answer.answerelse:response = "抱歉,暂时没有找到相关答案哦。"return render(request, 'qa/home.html', {'response': response})else:return render(request, 'qa/home.html', {'response': "请输入有效的问题呀。"})return render(request, 'qa/home.html')

在这个优化后的视图函数中:

  1. 增加了对user_question是否为空的判断,如果为空则返回相应提示,让用户输入有效的问题,增强了用户交互的友好性。
  2. 对于找不到答案的情况,返回了更友好的提示语句。

4.实现更复杂的问答逻辑,使用自然语言处理(NLP)库

安装必要的库*

首先确保已经安装了 nltk 库,如果没有安装,可以通过以下命令安装:

pip install nltk

导入必要的模块和下载相关资源(针对 nltk),views.py文件

from django.shortcuts import render
from.models import QuestionAnswer
import nltk
from nltk.stem import PorterStemmer
from nltk.corpus import stopwords# 下载nltk所需的停用词资源(只需执行一次,可在项目启动时或首次运行相关代码时)
nltk.download('stopwords')

修改后的视图函数 home

def home(request):if request.method == 'GET':return render(request, 'qa/home.html', {'response': ""})if request.method == 'POST':user_question = request.POST.get('question')if user_question:# 进行自然语言处理相关的预处理操作stemmer = PorterStemmer()stop_words = set(stopwords.words('english'))# 对用户问题进行分词、词干提取、停用词去除等预处理words = nltk.word_tokenize(user_question)words = [stemmer.stem(word) for word in words if word not in stop_words]# 重新组合处理后的问题processed_question = " ".join(words)# 这里可以实现更复杂的匹配逻辑,基于预处理后的问题进行查找answer = QuestionAnswer.objects.filter(question__icontains=processed_question).first()if answer:response = answer.answerelse:response = "抱歉,暂时没有找到相关答案哦。"return render(request, 'qa/home.html', {'response': response})else:return render(request, 'qa/home.html', {'response': "请输入有效的问题呀。"})return render(request, 'qa/home.html')

在上述修改后的代码中:

  • 首先导入了 nltk
    相关的模块用于进行自然语言处理操作,包括词干提取(PorterStemmer)和获取停用词(stopwords)。
  • 在处理 POST 请求且用户输入了有效问题后,对用户问题进行了一系列自然语言处理的预处理操作: 先创建了词干提取器
    PorterStemmer 和获取了英语的停用词集合。
  • 对用户问题进行分词,然后对每个分词进行词干提取并去除停用词,最后重新组合成处理后的问题。
  • 基于处理后的问题在 QuestionAnswer 模型中进行答案的查找匹配,根据是否找到答案来设置相应的 response值并返回给模板进行展示。

5.在数据库中预先输入问题和答案

在这里插入图片描述
这样就可以在页面上通过数据库的方式读取问题和答案

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/61877.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

问:Spring Boot应用监控组件工具,梳理一下?

在日常运维与开发过程中,Spring Boot 应用的监控是确保系统稳定性和性能的关键环节。本文将探讨 Spring Boot 常用的监控组件及工具的原理、适用场景,并针对不同场景下的运维监控方案进行介绍。 1. Spring Boot Actuator 原理: Spring Boo…

Spring-02-springmvc

2. 什么是SpringMVC 2.1. 概述 Spring MVC是Spring Framework的一部分,是基于Java实现MVC的轻量级Web框架。 为什么要学习SpringMVC呢? Spring MVC的特点: 轻量级,简单易学高效 , 基于请求响应的MVC框架与Spring兼容性好,无缝…

【数据结构】【线性表】一文讲完队列(附C语言源码)

队列 队列的基本概念基本术语基本操作 队列的顺序实现顺序队列结构体的创建顺序队列的初始化顺序队列入队顺序队列出队顺序队列存在的问题分析循环队列代码汇总 队列的链式实现链式队列的创建链式队列初始化-不带头结点链式队列入队-不带头节点链式队列出队-不带头结点带头结点…

cf 988 div3 C 将一些特定的元素拿出来考虑 E(交互,考虑多询问一位,以此判断这一位的情况)

C题意: [1 n] 的排列,我们要任意相邻的数相加得到的和是合数。 如果对于n 不存在这个一个排列,那么输出-1 一个比较显然的思路 就是奇数放一起,偶数放一起。奇数之间相加是偶数 偶数之间相加是偶数。那么他们都是合数。 但是还有…

手机文件可以打印出来吗

在数字化时代,手机已成为我们日常生活和工作中不可或缺的一部分。很多时候,我们需要将手机上的文件打印出来,无论是学习资料、工作报告还是生活文档。那么,手机上的文件真的可以打印出来吗?答案是肯定的。 直接前往打…

《Spring Boot:快速构建应用的利器》

一、Spring Boot 的崛起与优势 (四)丰富的生态支持 Spring Boot 拥有强大的生态系统,这是它在 Java 开发领域中占据重要地位的关键因素之一。 Spring Cloud 是 Spring Boot 生态中的重要组成部分,它为构建分布式系统的微服务架构…

爬虫实战:采集知乎XXX话题数据

目录 反爬虫的本意和其带来的挑战目标实战开发准备代码开发发现问题1. 发现问题[01]2. 发现问题[02] 解决问题1. 解决问题[01]2. 解决问题[02] 最终结果 结语 反爬虫的本意和其带来的挑战 在这个数字化时代社交媒体已经成为人们表达观点的重要渠道,对企业来说&…

微信小程序2-地图显示和地图标记

一、index修改页面&#xff0c;让页面能够显示地图和一个添加标记的按钮。 index.wxml <scroll-view class"scrollarea" scroll-y type"list"><view class"index_container"><map id"map" style"width: 100%; h…

Qt入门1——认识Qt的几个常用头文件和常用函数

1.头文件 ① #include <QPushButton>——“按钮”头文件&#xff1b; ② #include <QLabel>——“标签”头文件&#xff1b; ③ #include <QFont>——“字体”头文件&#xff1b; ④#include <QDebug>——输出相关信息&#xff1b; 2. 常用函数/类的基…

【vue3+Typescript】unapp+stompsj模式下替代plus-websocket的封装模块

由于plus-websocket实测存在消息丢失的问题&#xff0c;只能寻找替代的方案&#xff0c;看文章说使用原生的即可很好的工作。而目前在stompjs里需要使用websocket类型的封装模块&#xff0c;看了下原来提供的接口&#xff0c;采用uniapp原生的websocket模式&#xff0c;对原模块…

社交电商专业赋能高校教育与产业协同发展:定制开发AI智能名片及2+1链动商城小程序的创新驱动

摘要&#xff1a;本文围绕社交电商有望成为高校常态专业这一趋势展开深入探讨&#xff0c;剖析国家政策认可下其学科发展前景&#xff0c;着重阐述在专业建设进程中面临的师资短缺及实践教学难题。通过引入定制开发AI智能名片与21链动商城小程序&#xff0c;探究如何借助这些新…

Linux进阶:环境变量

环境变量是一组信息记录&#xff0c;类型是KeyValue型&#xff08;名值&#xff09;&#xff0c;用于操作系统运行的时候记录关键信息. env命令&#xff1a;查看系统全部的环境变量 语法&#xff1a;env $符号&#xff1a;取出指定的环境变量的值 语法&#xff1a;$变量名 …

CPU命名那些事

一、Intel CPU命名 1. 命名结构 Intel CPU 的命名通常包含以下几个部分&#xff1a; 品牌 产品线 系列 代数 具体型号 后缀 例如&#xff1a;Intel Core i7-13700K 2. 各部分含义 品牌 Intel&#xff1a;表示厂商&#xff08;几乎所有命名中都有&#xff09;。不同品…

英语写作中“联系、关联”associate correlate 及associated的用法

似乎是同义词的associate correlate 实际上意思差别明显&#xff0c;associate 是人们把两者联系在一起&#xff08;主观联系&#xff09;&#xff0c;而correlate 指客观联系。 例如&#xff1a; We always associate sports with health.&#xff08;我们总是将运动和健康联…

AR智能眼镜|AR眼镜定制开发|工业AR眼镜方案

AR眼镜的设计与制造成本主要受到芯片、显示屏和光学方案的影响&#xff0c;因此选择合适的芯片至关重要。一款优秀的芯片平台能够有效提升设备性能&#xff0c;并解决多种技术挑战。例如&#xff0c;采用联发科八核2.0GHz处理器&#xff0c;结合12nm制程工艺&#xff0c;这种低…

Unity 设计模式-单例模式(Singleton)详解

设计模式 设计模式 是指在软件开发中为解决常见问题而总结出的一套 可复用的解决方案。这些模式是经过长期实践证明有效的 编程经验总结&#xff0c;并可以在不同的项目中复用。设计模式并不是代码片段&#xff0c;而是对常见问题的 抽象解决方案&#xff0c;它提供了代码结构…

第二十一周机器学习笔记:动手深度学习之——数据操作、数据预处理

第二十周周报 摘要Abstract一、动手深度学习1. 数据操作1.1 数据基本操作1.2 数据运算1.2.1 广播机制 1.3 索引和切片 2. 数据预处理 二、复习RNN与LSTM1. Recurrent Neural Network&#xff08;RNN&#xff0c;循环神经网络&#xff09;1.1 词汇vector的编码方式1.2 RNN的变形…

ThinkPad t61p 作SMB服务器,打印服务器,pc ,android ,ipad利用此服务器互传文件

1.在t61p上安装win7 2,配置好smb 服务 3.再安装好打印驱动程序 4.pc与win7利用系统的网络互相发现,映射为硬盘使用。 5.android&#xff0c;ipad安装ES文件浏览器访问win7 共享文件夹&#xff0c;互传文件。 6.android手机安装FE文件浏览器&#xff0c;可以利用花生壳外网…

【深度学习之二】正则化函数(weight decay, dropout, label smoothing, and etc)详解,以及不同的函数适用的场景

在深度学习中正则化函数的重要性不言而喻&#xff0c;今天主要总结一些当前常用的一些正则化函数 在深度学习中&#xff0c;正则化&#xff08;Regularization&#xff09;是一种防止模型过拟合的技术。过拟合指的是模型在训练数据上表现很好&#xff0c;但在未见过的测试数据…

神经网络(系统性学习二):单层神经网络(感知机)

此前篇章&#xff1a; 神经网络中常用的激活函数 神经网络&#xff08;系统性学习一&#xff09;&#xff1a;入门篇 单层神经网络&#xff08;又叫感知机&#xff09; 单层网络是最简单的全连接神经网络&#xff0c;它仅有输入层和输出层&#xff0c;没有隐藏层。即&#x…