关于SpringBoot集成Kafka

关于Kafka

Apache Kafka 是一个分布式流处理平台,广泛用于构建实时数据管道和流应用。它能够处理大量的数据流,具有高吞吐量、可持久化存储、容错性和扩展性等特性。

Kafka一般用作实时数据流处理、消息队列、事件架构驱动等

Kafka的整体架构

  • ZooKeeper:

位于架构的顶部,负责管理和协调 Kafka 集群的各种元数据,包括集群配置、主题信息、分区领导者的选举等。

  • Producers (生产者):

Kafka体系中的主要角色之一,它们负责产生消息并将其发送到 Kafka 集群中的相应主题。

  • Brokers (代理/服务器):节点,也就是具体的Kafka实例,集群的组成单元,多个 Broker 组成一个集群。每个 Broker 存储着一部分主题的分区数据。
    • Topics (主题):主题是消息的类别,生产者将消息发布到特定的主题。一个Brokers包含多个topic。
      • Partitions (分区):每个主题可以划分为一个或多个分区,分区是物理上存储消息的地方。一个主题可以有多个分区
        • Leaders and Followers (领导者和跟随者):对于每个分区,有一个 Leader 负责接受所有生产和消费请求,而 Follower 则复制 Leader (图中红色部分)的数据。
        • Segments (段): 分区内部又细分为多个 Segment,每个 Segment 包括一个 .log 文件和其他相关文件,用于消息数据持久化。 
  • Consumers (消费者):

Kafka体系中的另一个主要角色,它们订阅主题并从 Kafka 集群中拉取消息。消费者可以组织成消费者组,同一组内的消费者共享消息。

Kafka的工作流程

  • 消息发布

生产者创建消息并将它们发送到指定的主题。生产者可以选择将消息发送到特定的分区,或者让 Kafka 根据某种策略(如轮询、哈希等)自动选择分区。

  • 消息存储

当消息到达Broker时,它会被追加到指定分区的日志文件末尾。每个分区都是一个独立的日志文件,按照偏移量(Offset)进行索引,确保消息的顺序性。

  • 消息消费

消费者订阅感兴趣的主题,并从指定的分区读取消息。消费者通过维护一个偏移量来跟踪已经处理的消息,确保不会重复消费。

  • 故障恢复

如果Broker发生故障,Kafka会从其他副本中选举一个新的Leader分区来继续提供服务,确保系统的高可用性。 

SpringBoot集成Kafka

引入依赖

在SpringBoot框架下,可以直接通过引入Kafka依

    <!-- Spring Kafka Starter --><dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka</artifactId></dependency>

yaml配置详解

关于SpringBoot中使用Kafka的配置结构如下:

spring:kafka:bootstrap-servers: localhost:9092  # Kafka整体配置:服务器地址,可以是多个以逗号分隔consumer: #作为消费者的具体配置group-id: my-group # 消费者的组ID,属于同一组的消费者会互相竞争消费消息# …… 消费者其他的配置producer: #作为生产者的具体配置value-serializer: org.apache.kafka.common.serialization.StringSerializer # 值的序列化器#……其他控制生产者的配置

各类参数配置说明:

归属配置项说明默认值作用
全局bootstrap-servers指定Kafka集群的地址,可以是多个地址,用逗号分隔-生产者和消费者通过这些地址与Kafka集群建立连接
消费者consumer.group-id指定消费者的组ID-属于同一组的消费者会互相竞争消费消息,确保每个消息只被组内的一个消费者消费
consumer.auto-offset-reset当没有初始偏移量可用或当前偏移量不再存在时,自动重置偏移量的策略latest决定了在消费者组没有已知偏移量时,从哪里开始读取消息
consumer.key-deserializer指定键的反序列化器org.apache.kafka.common.serialization.ByteArrayDeserializer将从Kafka接收到的字节数据转换为Java对象
consumer.value-deserializer指定值的反序列化器org.apache.kafka.common.serialization.ByteArrayDeserializer将从Kafka接收到的字节数据转换为Java对象
consumer.enable-auto-commit是否启用自动提交偏移量true如果启用,消费者会定期自动提交偏移量,否则需要手动提交
consumer.auto-commit-interval自动提交偏移量的时间间隔(毫秒)5000(5秒)控制自动提交的频率
consumer.max-poll-records单次轮询返回的最大记录数500控制每次轮询从Kafka获取的消息数量
consumer.fetch-min-bytes消费者从Kafka获取数据的最小字节数1如果小于该值,Kafka不会立即返回数据,而是等待更多数据积累
consumer.fetch-max-wait消费者从Kafka获取数据的最大等待时间(毫秒)500控制消费者在没有足够数据时的等待时间
consumer.session-timeout消费者会话超时时间(毫秒)10000(10秒)控制消费者在未发送心跳的情况下,Kafka认为其失效的时间
生产者producer.key-serializer指定键的序列化器org.apache.kafka.common.serialization.ByteArraySerializer将Java对象转换为字节数据,以便发送到Kafka
producer.value-serializer指定值的序列化器org.apache.kafka.common.serialization.ByteArraySerializer将Java对象转换为字节数据,以便发送到Kafka
producer.acks生产者发送消息时的确认模式1控制消息发送的可靠性
producer.retries生产者发送消息失败时的重试次数0控制消息发送失败时的重试机制
producer.batch-size生产者批量发送消息的大小(字节)16384(16KB)控制消息的批量发送,提高性能
producer.linger-ms生产者在发送消息前等待的时间(毫秒),以便收集更多的消息进行批量发送0控制消息的批量发送,提高性能

示例配置

spring:kafka:# 指定Kafka集群的地址,可以是多个地址,用逗号分隔# 生产者和消费者通过这些地址与Kafka集群建立连接bootstrap-servers: localhost:9092consumer:# 指定消费者的组ID# 属于同一组的消费者会互相竞争消费消息,确保每个消息只被组内的一个消费者消费group-id: my-group# 当没有初始偏移量可用或当前偏移量不再存在时,自动重置偏移量的策略# 可选值: earliest, latest, none# earliest: 自动重置为最早的偏移量# latest: 自动重置为最新的偏移量# none: 如果没有找到消费者组的偏移量,则抛出异常auto-offset-reset: earliest# 指定键的反序列化器# 将从Kafka接收到的字节数据转换为Java对象key-deserializer: org.apache.kafka.common.serialization.StringDeserializer# 指定值的反序列化器# 将从Kafka接收到的字节数据转换为Java对象value-deserializer: org.apache.kafka.common.serialization.StringDeserializer# 是否启用自动提交偏移量# 如果启用,消费者会定期自动提交偏移量,否则需要手动提交enable-auto-commit: true# 自动提交偏移量的时间间隔(毫秒)# 控制自动提交的频率auto-commit-interval: 5000# 单次轮询返回的最大记录数# 控制每次轮询从Kafka获取的消息数量max-poll-records: 100# 消费者从Kafka获取数据的最小字节数# 如果小于该值,Kafka不会立即返回数据,而是等待更多数据积累fetch-min-bytes: 1# 消费者从Kafka获取数据的最大等待时间(毫秒)# 控制消费者在没有足够数据时的等待时间fetch-max-wait: 500# 消费者会话超时时间(毫秒)# 控制消费者在未发送心跳的情况下,Kafka认为其失效的时间session-timeout: 10000producer:# 指定键的序列化器# 将Java对象转换为字节数据,以便发送到Kafkakey-serializer: org.apache.kafka.common.serialization.StringSerializer# 指定值的序列化器# 将Java对象转换为字节数据,以便发送到Kafkavalue-serializer: org.apache.kafka.common.serialization.StringSerializer# 生产者发送消息时的确认模式# 可选值: 0, 1, all# 0: 不等待任何确认# 1: 等待leader节点确认# all: 等待所有副本节点确认acks: all# 生产者发送消息失败时的重试次数# 控制消息发送失败时的重试机制retries: 3# 生产者批量发送消息的大小(字节)# 控制消息的批量发送,提高性能batch-size: 16384# 生产者在发送消息前等待的时间(毫秒),以便收集更多的消息进行批量发送# 控制消息的批量发送,提高性能linger-ms: 1

关于消费者的 auto-commit属性:

enable-auto-commit 是Kafka消费者的一个重要配置属性,它决定了消费者是否自动提交偏移量。

如果设置为true,即自动提交:

  • 消费者会定期自动提交偏移量。
  • 提交的频率由 auto-commit-interval 配置项决定,默认为5秒。
  • 消费者在每次轮询后会检查是否需要提交偏移量,如果达到提交间隔时间,则提交当前偏移量。

设置为true的优势主要在于简化开发,如果消费者崩溃,重新启动后可以从上次提交的偏移量继续消费,避免重复消费大量消息。劣势则是自动提交的频率在处理大数据量是会有性能风险。

如果设置为false,即手动提交:

  • 消费者不会自动提交偏移量。
  • 开发者需要手动调用方法来提交偏移量(具体提交方法在下文)
  • 可以在消息处理完成后立即提交偏移量,也可以批量提交。

设置为false的优势在于更为精准的控制,能有效提升性能,开发者可以完全控制何时提交偏移量,确保消息处理的可靠性和一致性。可以根据业务需求选择同步提交或异步提交,具有更强的灵活性。劣势则是如果忘记提交偏移量,可能会导致消息重复消费或丢失。

消费与生成的使用

进行消息监听与消费

消息的监听主要是通过@KafkaListener注解来完成,以下是一个例子:

@Service
public class KafkaConsumer {@Autowiredprivate DataService dataService;@KafkaListener(topics = "my-topic", groupId = "my-group")public void listen(String message) {//如果你的方法参数是一个 String 类型,那么默认情况下,这个参数会被解析为消息的值(Value)log.info("Received Message: {}" , message);dataService.OpData(message); }//如果你想同时获取消息的键(Key)和值(Value),可以使用 ConsumerRecord 对象。ConsumerRecord 包含了消息的所有信息,包括键、值、分区、偏移量等。@KafkaListener(topics = "my-topic")public void listen(ConsumerRecord<String, String> record) {log.info("Received Message Key: " + record.key());log.info("Received Message Value: " + record.value());log.info("Partition: " + record.partition());log.info("Offset: " + record.offset());}}

关于@KafkaListener注解的参数如下:

参数类型说明示例
topicsString[]指定要监听的主题列表。@KafkaListener(topics = "my-topic")
topicPartitionsTopicPartitionOffset[]指定要监听的主题和分区。可以用于更细粒度的控制。@KafkaListener(topicPartitions = @TopicPartition(topic = "my-topic", partitions = { "0", "1" }))
groupIdString指定消费者的组ID。如果在配置文件中已经指定了组ID,这里可以省略。@KafkaListener(topics = "my-topic", groupId = "my-group")
containerFactoryString指定用于创建监听器容器的工厂Bean的名称。通常在配置类中定义。@KafkaListener(topics = "my-topic", containerFactory = "kafkaListenerContainerFactory")
idString指定监听器的唯一标识符。可以在监控和管理中使用。@KafkaListener(topics = "my-topic", id = "myListener")
concurrencyString指定并发消费者线程的数量。@KafkaListener(topics = "my-topic", concurrency = "3")
autoStartupboolean指定监听器是否在应用程序启动时自动启动。@KafkaListener(topics = "my-topic", autoStartup = "false")
propertiesMap<String, String>指定额外的Kafka消费者属性。@KafkaListener(topics = "my-topic", properties = "max.poll.interval.ms:120000")
groupIdPrefixString指定组ID的前缀。实际的组ID将是前缀加上方法名。@KafkaListener(topics = "my-topic", groupIdPrefix = "prefix-")
clientIdPrefixString指定客户端ID的前缀。实际的客户端ID将是前缀加上方法名。@KafkaListener(topics = "my-topic", clientIdPrefix = "client-")
containerPropertiesContainerProperties指定容器的属性。@KafkaListener(topics = "my-topic", containerProperties = @ContainerProperties(ackMode = AckMode.MANUAL))
errorHandlerString指定错误处理器Bean的名称。@KafkaListener(topics = "my-topic", errorHandler = "myErrorHandler")
replyTemplateString指定回复模板Bean的名称。@KafkaListener(topics = "my-topic", replyTemplate = "myReplyTemplate")
replyTopicString指定回复主题。@KafkaListener(topics = "my-topic", replyTopic = "reply-topic")
replyTimeoutlong指定回复超时时间(毫秒)。@KafkaListener(topics = "my-topic", replyTimeout = 5000)
replyHeadersString[]指定要传递的回复头。@KafkaListener(topics = "my-topic", replyHeaders = { "header1", "header2" })
groupIdIsolationLevelIsolationLevel指定隔离级别。@KafkaListener(topics = "my-topic", groupIdIsolationLevel = IsolationLevel.READ_COMMITTED)
containerGroupString指定容器组。@KafkaListener(topics = "my-topic", containerGroup = "group1")

 额外说明一下containerFactory 参数,为了使用 containerFactory 参数,你需要在配置类中定义相应的工厂Bean:


@Configuration
@EnableKafka
public class KafkaConfig {@Beanpublic ConsumerFactory<String, String> consumerFactory() {Map<String, Object> props = new HashMap<>();props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");props.put(ConsumerConfig.GROUP_ID_CONFIG, "my-group");props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);return new DefaultKafkaConsumerFactory<>(props);}@Beanpublic ConcurrentKafkaListenerContainerFactory<String, String> kafkaListenerContainerFactory() {ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory<>();factory.setConsumerFactory(consumerFactory());factory.getContainerProperties().setAckMode(ContainerProperties.AckMode.MANUAL_IMMEDIATE);return factory;}
}

基于使用containerFactory配置一般主要用于手动提交的时候,可以在方法中使用提交参数,如下:

@Service
public class KafkaConsumer {@KafkaListener(topics = "my-topic",containerFactory = "kafkaListenerContainerFactory")public void listen(ConsumerRecord<String, String> record, Acknowledgment acknowledgment){log.info("Received Message: " + record.value());// 处理消息try {// 模拟消息处理Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}// 手动提交偏移量 enable-auto-commit为false的话acknowledgment.acknowledge();}
}

消息生产

主要是基于KafkaTemplate进行消息的发送,可以根据需求,先定义生产者的工厂Bean:

@Configuration
public class KafkaProducerConfig {@Beanpublic ProducerFactory<String, String> producerFactory() {Map<String, Object> configProps = new HashMap<>();configProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");configProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);configProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);return new DefaultKafkaProducerFactory<>(configProps);}@Beanpublic KafkaTemplate<String, String> kafkaTemplate() {return new KafkaTemplate<>(producerFactory());}
}

 封装生产者方法:

@Service
public class KafkaProducer {@Autowiredprivate KafkaTemplate<String, String> kafkaTemplate;/*** 发送字符串消息到指定主题** @param topic   主题名称* @param message 消息内容*/public void sendMessage(String topic, String message) {kafkaTemplate.send(topic, message);}/*** 发送带键的字符串消息到指定主题** @param topic   主题名称* @param key     消息键* @param message 消息内容*/public void sendMessageWithKey(String topic, String key, String message) {kafkaTemplate.send(topic, key, message);}/*** 异步发送消息并处理回调** @param topic   主题名称* @param message 消息内容* @param callback 回调函数*/public void sendAsyncMessage(String topic, String message, KafkaCallback<String, String> callback) {kafkaTemplate.send(topic, message).addCallback(callback);}/*** 异步发送带键的消息并处理回调** @param topic   主题名称* @param key     消息键* @param message 消息内容* @param callback 回调函数*/public void sendAsyncMessageWithKey(String topic, String key, String message, KafkaCallback<String, String> callback) {kafkaTemplate.send(topic, key, message).addCallback(callback);}
}

为了支持异步发送消息并处理回调,定义回调不同的接口:

public interface KafkaCallback<K, V> extends ListenableFutureCallback<SendResult<K, V>> {@Overridedefault void onSuccess(SendResult<K, V> result) {//回调处理}@Overridedefault void onFailure(Throwable ex) {//处理}
}

 直接使用

@RestController
@RequestMapping("/kafka")
public class KafkaController {@Autowiredprivate KafkaProducerService kafkaProducerService;@PostMapping("/send")public String sendMessage(@RequestBody String message) {kafkaProducerService.sendMessage("my-topic", message);return "Message sent: " + message;}@PostMapping("/send-with-key")public String sendMessageWithKey(@RequestBody String message) {kafkaProducerService.sendMessageWithKey("my-topic", "key1", message);return "Message with key sent: " + message;}@PostMapping("/send-async")public String sendAsyncMessage(@RequestBody String message) {kafkaProducerService.sendAsyncMessage("my-topic", message, new KafkaCallback<String, String>());return "Async message sent: " + message;}@PostMapping("/send-async-with-key")public String sendAsyncMessageWithKey(@RequestBody String message) {kafkaProducerService.sendAsyncMessageWithKey("my-topic", "key1", message, new KafkaCallback<String, String>());return "Async message with key sent: " + message;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/61794.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux 下的IO模型

一&#xff1a;四种IO模 1.1&#xff1a;阻塞式IO&#xff08;最简单&#xff0c;最常用&#xff0c;效率最低&#xff09; 阻塞I/O 模式是最普遍使用的I/O 模式&#xff0c;大部分程序使用的都是阻塞模式的I/O 。 缺省情况下&#xff08;及系统默认状态&#xff09;&#xf…

vue3项目部署在阿里云轻量应用服务器上

文章目录 概要整体部署流程技术细节小结 概要 vue3前端项目部署在阿里云轻量服务器 整体部署流程 首先有一个Vue3前端项目和阿里云应用服务器 确保环境准备 如果是新的服务器&#xff0c;在服务器内运行以下命令更新软件包 sudo apt update && sudo apt upgrade -y …

tcpdump交叉编译

TCPDUMP在Libpcap上开发。 首先需要编译libcap。 网上那么多教程&#xff0c;下载地址都只给了一个英文的官网首页&#xff0c; 你尽可以试试&#xff0c;从里面找到下载地址都要费半天时间。 \color{red}网上那么多教程&#xff0c;下载地址都只给了一个英文的官网首页&#…

KubeSphere 最佳实战:K8s 构建高可用、高性能 Redis 集群实战指南

首发&#xff1a;运维有术。 本指南将逐步引导您完成以下关键任务&#xff1a; 安装 Redis&#xff1a;使用 StatefulSet 部署 Redis。自动或手动配置 Redis 集群&#xff1a;使用命令行工具初始化 Redis 集群。Redis 性能测试&#xff1a;使用 Redis 自带的 Benchmark 工具进…

02 python基础 python解释器安装

首先在网站&#xff1a;Welcome to Python.org进行下载安装python 最新的解释器不一定是最好的&#xff0c;最稳定的才一定是最好的&#xff1b;要关注解释器最后维护 的时间。 一、python的安装 python安装的时候一定要在下载勾选好添加path环境 安装的时候尽量选择好自己的安…

java编程开发基础,正则表达式的使用案例Demo

java编程开发基础,正则表达式的使用案例Demo!实际开发中&#xff0c;经常遇到一些字符串&#xff0c;信息的裁剪和提取操作&#xff0c;正则表达式是经常使用的&#xff0c;下面的案例&#xff0c;可以帮助大家快速的了解和熟悉&#xff0c;正则表达式的使用技巧。 package com…

Windows Pycharm 远程 Spark 开发 PySpark

一、环境版本 环境版本PyCharm2024.1.2 (Professional Edition)Ubuntu Kylin16.04Hadoop3.3.5Hive3.1.3Spark2.4.0 二、Pycharm远程开发 文件-远程-开发 选择 SSH连接&#xff0c;连接虚拟机&#xff0c;选择项目目录即可远程开发

WebGL进阶(十一)层次模型

理论基础&#xff1a; 效果&#xff1a; 源码&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"vie…

【H2O2|全栈】JS进阶知识(九)ES6(5)

目录 前言 开篇语 准备工作 class类 概念 形式 直接继承 概念 优点 案例 重写 概念 案例 关于重载 结束语 前言 开篇语 本系列博客主要分享JavaScript的进阶语法知识&#xff0c;本期为第九期&#xff0c;依然围绕ES6的语法进行展开。 本期内容为&#xff1a…

Prompting LLMs to Solve Complex Tasks: A Review

文章目录 题目简介任务分解未来方向结论 题目 促使 LLM 解决复杂任务&#xff1a; 综述 论文地址&#xff1a;https://www.intjit.org/cms/journal/volume/29/1/291_3.pdf 简介 大型语言模型 (LLM) 的最新趋势显而易见&#xff0c;这体现在大型科技公司的投资以及媒体和在线社…

学会Lambda,让程序Pythonic一点

Lambda是Python里的高阶用法&#xff0c;要把代码写得Pythonic&#xff0c;就需要了解这些高阶用法&#xff0c;想说自己是一名真正的Python程序员&#xff0c;先要把代码写得Pythonic。 今天聊下Lambda的用法&#xff0c;写篇简短的用法说明。 Lambda是匿名函数的意思&#…

加速科技精彩亮相中国国际半导体博览会IC China 2024

11月18日—20日&#xff0c;第二十一届中国国际半导体博览会&#xff08;IC China 2024&#xff09;在北京国家会议中心顺利举办&#xff0c;加速科技携重磅产品及全系测试解决方案精彩亮相&#xff0c;加速科技创始人兼董事长邬刚受邀在先进封装创新发展论坛与半导体产业前沿与…

window11编译pycdc.exe

一、代码库和参考链接 在对python打包的exe文件进行反编译时&#xff0c;会使用到uncompyle6工具&#xff0c;但是这个工具只支持python3.8及以下&#xff0c;针对更高的版本的python则不能反编译。 关于反编译参考几个文章&#xff1a; Python3.9及以上Pyinstaller 反编译教…

【深度学习之回归预测篇】 深度极限学习机DELM多特征回归拟合预测(Matlab源代码)

深度极限学习机 (DELM) 作为一种新型的深度学习算法&#xff0c;凭借其独特的结构和训练方式&#xff0c;在诸多领域展现出优异的性能。本文将重点探讨DELM在多输入单输出 (MISO) 场景下的应用&#xff0c;深入分析其算法原理、性能特点以及未来发展前景。 1、 DELM算法原理及其…

前端-react(class组件和Hooks)

文章主要以Hooks为主,部分涉及class组件方法进行对比 一.了解react 1.管理组件的方式 在React中&#xff0c;有两种主要的方式来管理组件的状态和生命周期&#xff1a;Class 组件和 Hooks。 Class 组件&#xff1a; Class 组件是 React 最早引入的方式&#xff0c;它是基于…

Ollama vs VLLM:大模型推理性能全面测评!

最近在用本地大模型跑实验&#xff0c;一开始选择了ollama,分别部署了Qwen2.5-14B和Qwen2.5-32B&#xff0c;发现最后跑出来的实验效果很差&#xff0c;一开始一直以为prompt的问题&#xff0c;尝试了不同的prompt&#xff0c;最后效果还是一直不好。随后尝试了vllm部署Qwen2.5…

基于深度学习CNN算法的花卉分类识别系统01--带数据集-pyqt5UI界面-全套源码

文章目录 基于深度学习算法的花卉分类识别系统一、项目摘要二、项目运行效果三、项目文件介绍四、项目环境配置1、项目环境库2、环境配置视频教程 五、项目系统架构六、项目构建流程1、数据集2、算法网络Mobilenet3、网络模型训练4、训练好的模型预测5、UI界面设计-pyqt56、项目…

【PCIE常见面试问题-1】

PCIE常见面试问题-1 1 PCIE概述1.1 PCI为何发展开PCIE&#xff1f;1.2 什么是Root Complex(RC)1.3 什么是EP&#xff1f;1.4 什么是Swith1.5 PCIE协议如何组织通信的&#xff1f;1.6 简要介绍一下PCIE的分层结构&#xff0c;为什么需要分层&#xff1f;1.7 PCIE的事务类型有哪些…

解决 Docker Desktop 启动报错:Docker Desktop is unable to detect a Hypervisor

在使用 Docker Desktop 时&#xff0c;有时会遇到启动报错&#xff1a;“Docker Desktop is unable to detect a Hypervisor.” 这是由于系统的虚拟化功能未正确启用或配置导致的。本文将分步骤指导如何解决该问题。 一、检查虚拟化是否已启用 打开任务管理器 按下 Ctrl Shift…

订单日记为“惠采科技”提供全方位的进销存管理支持

感谢温州惠采科技有限责任公司选择使用订单日记&#xff01; 温州惠采科技有限责任公司&#xff0c;成立于2024年&#xff0c;位于浙江省温州市&#xff0c;是一家以从事销售电气辅材为主的企业。 在业务不断壮大的过程中&#xff0c;想使用一种既能提升运营效率又能节省成本…