算法.图论-习题全集(Updating)

文章目录

  • 本节设置的意义
  • 并查集篇
    • 并查集简介以及常见技巧
    • 并查集板子(洛谷)
    • 情侣牵手问题
    • 相似的字符串组
    • 岛屿数量(并查集做法)
    • 省份数量
    • 移除最多的同行或同列石头
    • 最大的人工岛
    • 找出知晓秘密的所有专家
  • 建图及其拓扑排序篇
    • 链式前向星建图板子
    • 课程表

本节设置的意义

主要就是为了复习图论算法, 尝试从题目解析的角度,更深入的理解图论算法…

并查集篇

并查集简介以及常见技巧

并查集是一种用于大集团查找, 合并等操作的数据结构, 常见的方法有

  • find: 用来查找元素在大集团中的代表元素(这里使用的是扁平化的处理)
  • isSameSet: 用来查找两个元素是不是一个大集团的(其实就是find的应用)
  • union: 用来合并两大集团的元素

关于并查集打标签的技巧, 其实我们之前的size数组也是一种打标签的逻辑, 其实打标签就是给每一个集团的代表节点打上标签即可, 还有我们在并查集的题目中通常会设置一个sets作为集合的总数目(每次合并–), 这是一个常见的技巧, 并查集的细节我们在这里不进行过多的介绍, 在之前的章节中有细致的描述…

并查集板子(洛谷)

这里我们的并查集的板子使用的是洛谷的板子(小挂大的优化都没必要其实)

// 并查集模版(洛谷)
// 本实现用递归函数实现路径压缩,而且省掉了小挂大的优化,一般情况下可以省略
// 测试链接 : https://www.luogu.com.cn/problem/P3367import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;public class Main{public static int MAXN = 10001;public static int[] father = new int[MAXN];public static int n;public static void build() {for (int i = 0; i <= n; i++) {father[i] = i;}}public static int find(int i) {if (i != father[i]) {father[i] = find(father[i]);}return father[i];}public static boolean isSameSet(int x, int y) {return find(x) == find(y);}public static void union(int x, int y) {father[find(x)] = find(y);}public static void main(String[] args) throws IOException {BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));while (in.nextToken() != StreamTokenizer.TT_EOF) {n = (int) in.nval;build();in.nextToken();int m = (int) in.nval;for (int i = 0; i < m; i++) {in.nextToken();int z = (int) in.nval;in.nextToken();int x = (int) in.nval;in.nextToken();int y = (int) in.nval;if (z == 1) {union(x, y);} else {out.println(isSameSet(x, y) ? "Y" : "N");}}}out.flush();out.close();br.close();}}

情侣牵手问题

在这里插入图片描述
本题的突破点就是如果一个大集团里面有 n 对情侣, 那么我们至少要交换 n - 1次(通过把情侣进行编号)

// 这次我们尝试使用轻量版的并查集来解决这道题
class Solution {private static final int MAX_CP = 31;private static final int[] father = new int[MAX_CP];private static int sets = 0;private static int find(int i) {if (i != father[i]) {father[i] = find(father[i]);}return father[i];}private static boolean isSameSet(int a, int b) {return find(a) == find(b);}private static void union(int a, int b) {int fa = find(a);int fb = find(b);if (fa != fb) {father[fa] = fb;sets--;}}// 初始化并查集private static void build(int n) {for (int i = 0; i < n; i++) {father[i] = i;}sets = n;}public int minSwapsCouples(int[] row) {build(row.length / 2);for (int i = 0; i < row.length; i += 2) {int n1 = row[i] / 2;int n2 = row[i + 1] / 2;union(n1, n2);}return row.length / 2 - sets;}
}

相似的字符串组

在这里插入图片描述
其实就是枚举每一个位置, 然后判断是不是一组的就OK了

// 还是使用一下轻量级的并查集板子
class Solution {private static final int MAX_SZ = 301;private static final int[] father = new int[MAX_SZ];private static int sets = 0;private static int find(int i) {if (i != father[i]) {father[i] = find(father[i]);}return father[i];}private static boolean isSameSet(int a, int b) {return find(a) == find(b);}private static void union(int a, int b) {int fa = find(a);int fb = find(b);if (fa != fb) {father[fa] = fb;sets--;}}// 初始化并查集private static void build(int n) {for (int i = 0; i < n; i++) {father[i] = i;}sets = n;}public int numSimilarGroups(String[] strs) {build(strs.length);// 主流程的时间复杂度是 O(n ^ 2), 遍历strs的每一个位置int m = strs[0].length();for (int i = 0; i < strs.length; i++) {for (int j = i + 1; j < strs.length; j++) {// 获取到两个字符串, 然后计算两个字符串的不同字符数量String s1 = strs[i];String s2 = strs[j];int diff = 0;for (int k = 0; k < m && diff < 3; k++) {if (s1.charAt(k) != s2.charAt(k))diff++;}if (diff == 0 || diff == 2)union(i, j);}}return sets;}
}

岛屿数量(并查集做法)

在这里插入图片描述
这道题的解法非常多, 比如多源 BFS , 洪水填充(其实就是递归加回溯) , 还有今天介绍的并查集的方法(这个方法不是最好的)

// 这个题的并查集做法只要注意一点就可以了: 把一个二维下标转化为一维下标
class Solution {private static final int MAX_SZ = 301 * 301;private static final int[] father = new int[MAX_SZ];private static int sets = 0;private static int row = 0;private static int col = 0;// 模拟bfs的move数组private static final int[] move = { -1, 0, 1, 0, -1 };private static int find(int i) {if (i != father[i]) {father[i] = find(father[i]);}return father[i];}private static boolean isSameSet(int a, int b) {return find(a) == find(b);}private static void union(int a, int b) {int fa = find(a);int fb = find(b);if (fa != fb) {father[fa] = fb;sets--;}}private static void build(char[][] grid, int rl, int cl) {row = rl;col = cl;sets = 0;for (int i = 0; i < row; i++) {for (int j = 0; j < col; j++) {if (grid[i][j] == '1') {sets++;father[getIndex(i, j)] = getIndex(i, j);}}}}public int numIslands(char[][] grid) {// 初始化并查集并统计 '1' 的数量build(grid, grid.length, grid[0].length);// 遍历grid进行合并for (int i = 0; i < row; i++) {for (int j = 0; j < col; j++) {// 向四个方向扩展if (grid[i][j] == '1') {for (int k = 0; k < 4; k++) {int nx = i + move[k];int ny = j + move[k + 1];if (nx >= 0 && nx < row && ny >= 0 && ny < col && grid[nx][ny] == '1') {union(getIndex(i, j), getIndex(nx, ny));}}}}}return sets;}// 二维下标转一维下标private static int getIndex(int i, int j) {return i * col + j;}
}

省份数量

在这里插入图片描述
没什么可说的, 就是一个简单的并查集的思路

class Solution {// 这其实也是一个并查集的题private static final int MAXM = 201;private static final int[] father = new int[MAXM];private static final int[] size = new int[MAXM];private static int sets = 0;private static int find(int i){if(i != father[i]){father[i] = find(father[i]);}return father[i];}private static boolean isSameSet(int a, int b){return find(a) == find(b);}private static void union(int a, int b){if(!isSameSet(a, b)){int fa = find(a);int fb = find(b);if(size[fa] > size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}sets--;}}private static void build(int n){for(int i = 0; i < n; i++){father[i] = i;size[i] = 1;}sets = n;}public int findCircleNum(int[][] isConnected) {// 初始化并查集build(isConnected.length);for(int i = 0; i < isConnected.length; i++){int[] info = isConnected[i];for(int j = 0; j < info.length; j++){if(info[j] == 1){union(i, j);}}}return sets;}
}

移除最多的同行或同列石头

在这里插入图片描述
其实就是每一个集团最后都会被消成一个元素, 我们中间用哈希表加了一些关于离散化的处理的技巧

// 使用一下轻量版本的并查集加上哈希表进行离散化的操作
class Solution {private static Map<Integer, Integer> rowFirst = new HashMap<>();private static Map<Integer, Integer> colFirst = new HashMap<>();private static final int MAXM = 1001;private static final int[] father = new int[MAXM];private static int sets = 0;private static int find(int i){if(i != father[i]){father[i] = find(father[i]);}return father[i];}private static boolean isSameSet(int a, int b){return find(a) == find(b);}private static void union(int a, int b){int fa = find(a);int fb = find(b);if(fa != fb){father[fa] = fb;sets--;}}// 初始化并查集private static void build(int n){for(int i = 0; i < n; i++){father[i] = i;}sets = n;}public int removeStones(int[][] stones) {// 清空哈希表rowFirst.clear();colFirst.clear();// 初始化并查集build(stones.length);for(int i = 0; i < stones.length; i++){int row = stones[i][0];int col = stones[i][1];if(!rowFirst.containsKey(row)){rowFirst.put(row, i);}else{union(rowFirst.get(row), i);}if(!colFirst.containsKey(col)){colFirst.put(col, i);}else{union(colFirst.get(col), i);}}return stones.length - sets;}}

最大的人工岛

在这里插入图片描述
本题注意的点就是, 首先我们二维的矩阵, 想要使用并查集, 需要先把二维的坐标转化为一维的坐标, 然后通过一维的坐标使用并查集, 首先把所有的岛进行合并, 然后来到一个 空位置 , 就尝试向四个方向进行扩展尝试进行岛屿的链接, 最后返回最大的连成一片的岛屿数量即可

/*** 本题我们是采用的并查集(轻量板子)的方法来做*  核心点就是首先使用 并查集 (二维下标转换一维下标) 进行人工岛的合并*  本题需要我们使用size的辅助信息, 因为 size 也相当于打标签的技巧*  然后枚举每一个位置进行岛屿的合并*/
class Solution {private static final int MAX_LEN = 501;private static final int MAX_SIZE = MAX_LEN * MAX_LEN;private static final int[] father = new int[MAX_SIZE];private static final int[] size = new int[MAX_SIZE];private static int len = 0;private static final int[] move = {-1, 0, 1, 0, -1};private static int find(int i){if(i != father[i]){father[i] = find(father[i]);}return father[i];}private static boolean isSameSet(int a, int b){return find(a) == find(b);}private static void union(int a, int b){if(!isSameSet(a, b)){int fa = find(a);int fb = find(b);if(size[fa] > size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}}}// 初始化并查集private static void build(int[][] grid){len = grid.length;for(int i = 0; i < len; i++){for(int j = 0; j < len; j++){if(grid[i][j] == 1){int index = getIndex(i, j);father[index] = index;size[index] = 1;}}}}// 二维下标转换为一维下标private static int getIndex(int i, int j){return i * len + j;}public int largestIsland(int[][] grid) {build(grid);int res = 0;// 遍历矩阵进行合并for(int i = 0; i < len; i++){for(int j = 0; j < len; j++){if(grid[i][j] == 1){// 此时向四周进行扩展合并for(int k = 0; k < 4; k++){int nx = i + move[k];int ny = j + move[k + 1];if(nx >= 0 && nx < len && ny >= 0 && ny < len && grid[nx][ny] == 1){union(getIndex(i, j), getIndex(nx, ny));}}   // 尝试进行人工岛最大面积的更新res = Math.max(res, size[find(getIndex(i, j))]);}}}// 遍历所有的 0 位置, 尝试向四周进行枚举更新最大值// 创建一个map用来进行去重Set<Integer> set = new HashSet<>();for(int i = 0; i < len; i++){for(int j = 0; j < len; j++){if(grid[i][j] == 0){set.clear();int tempRes = 1;// 向四周进行扩展然后尝试进行岛屿链接for(int k = 0; k < 4; k++){int nx = i + move[k];int ny = j + move[k + 1];if(nx >= 0 && nx < len && ny >= 0 && ny < len && grid[nx][ny] == 1){int f = find(getIndex(nx, ny));if(!set.contains(f)){tempRes += size[f];set.add(f);}}}res = Math.max(res, tempRes); }}}return res;}
}

找出知晓秘密的所有专家

在这里插入图片描述
本题我们运用的是一种打标签的技巧, 还有就是注意的是并查集如何进行拆解, 其实就是修改一下father数组的内容, 然后把size数组的值置为1即可

/*** 本题主要就是涉及到并查集的打标签的技巧, 还有如何拆散一个并查集* 首先就是关于并查集打标签: 其实就是给集团领袖节点打上标签信息(类似size数组)* 关于拆散并查集: 其实就是把father数组重新设置为自身, size置为1(如果有的话)*/class Solution {// 并查集轻量化的板子private static final int MAXN = 100001;private static final int[] father = new int[MAXN];private static final boolean[] knowSecrets = new boolean[MAXN];private static int find(int i){if(i != father[i]){father[i] = find(father[i]);}return father[i];}private static boolean isSameSet(int a, int b){return find(a) == find(b);}private static void union(int a, int b){if(!isSameSet(a, b)){father[find(a)] = find(b);}}// 初始化并查集private static void build(int n, int firstPerson){for(int i = 0; i < n; i++){father[i] = i;knowSecrets[i] = false;}// 初始化知道秘密的集团(只需要给领袖节点打上标签就好了)union(0, firstPerson);knowSecrets[0] = true;knowSecrets[firstPerson] = true;}public List<Integer> findAllPeople(int n, int[][] meetings, int firstPerson) {// 首先初始化并查集build(n, firstPerson);// 把meetings进行排序便于处理Arrays.sort(meetings, (a, b) -> a[2] - b[2]);int l = 0;int r = 0;while(l < meetings.length){// 首先把r指针置为l的位置r = l;int tempL = l;// 向右侧扩充(结束的时候r指向的下一个不同的元素的边界位置)while(r < meetings.length && meetings[r][2] == meetings[l][2]){r++;}// 先便利一边并查集进行集合元素的合并while(l < r){union(meetings[l][0], meetings[l][1]);if(isSameSet(0, meetings[l][0])) knowSecrets[meetings[l][0]] = true;if(isSameSet(0, meetings[l][1])) knowSecrets[meetings[l][1]] = true;l++;}// 再次便利一边这个时间点的元素进行集合的拆解l = tempL;while(l < r){if(!isSameSet(meetings[l][0], 0) && !isSameSet(meetings[l][1], 0)){father[meetings[l][0]] = meetings[l][0];father[meetings[l][1]] = meetings[l][1];}l++;}l = r;}// 进行元素的收集List<Integer> res = new ArrayList<>();for(int i = 0; i < n; i++){if(isSameSet(0, i)){res.add(i);}}return res;}
}

建图及其拓扑排序篇

建图的方法有三种, 邻接表, 邻接矩阵, 以及链式前向星, 我们更推荐的是静态空间的链式前向星的建图法, 下面是链式前向星的板子

链式前向星建图板子

/*** 关于大厂笔试以及比赛中的建图方式的测试, 其实就是使用静态的数组空间进行建图* 我们设置 3 / 4 / 5 个静态数组空间* head数组(存储点对应的头边编号), next数组(边对应下一条边的编号), to数组(边去往的点), weight数组(边对应的权值), indegree数组(点对应的入度)* 关于拓扑排序(topoSort), 我们最常用的方法其实就是零入度删除法(使用队列, 必要的时候使用小根堆), 关于是否环化的判断我们使用计数器实现* 下面是我们提供的链式建图的板子, 以及拓扑排序的板子*/public class createGraphByLinkedProStar{// 设置点的最大数量private static final int MAXN = 10001;// 设置边的最大数量private static final int MAXM = 10001;// head数组private static final int[] head = new int[MAXN];// next数组private static final int[] next = new int[MAXM];// to数组private static final int[] to = new int[MAXM];// weight数组private static final int[] weight = new int[MAXM];// indegree数组(统计入度)private static final int[] indegree = new int[MAXN];// cnt统计边的数量private static int cnt = 1;// 添加边的方法(顺便统计入度)private static void addEdge(int u, int v, int w){next[cnt] = head[u];to[cnt] = v;weight[cnt] = w;head[u] = cnt++;indegree[v]++;}// 初始化静态空间(只需要清空head以及indegree数组)然后建图(这里是有向带权图)private static void build(int n, int[][] edges){cnt = 1;for(int i = 0; i <= n; i++){indegree[i] = 0;head[i] = 0;}for(int[] edge : edges){addEdge(edge[0], edge[1], edge[2]);}}// 拓扑排序(topoSort的板子)private static int[] topoSort(int n){// 首先创建一个队列(将来可以作为结果返回)int[] queue = new int[n];int l = 0;int r = 0;// 遍历入度表, 添加所有0入度的点进队列for(int i = 0; i < n; i++){if(indegree[i] == 0){queue[r++] = i;}}// 利用链式前向星的遍历开始跑拓扑排序int elemCnt = 0;while(l < r){int cur = queue[l++];elemCnt++;for(int ei = head[cur]; ei != 0; ei = next[ei]){if(--indegree[to[ei]] == 0){queue[r++] = to[ei];}}}return elemCnt == n ? queue : new int[0];}}

课程表

标准的使用拓扑排序的板子 + 加上链式前向星建图法直接打败 100 %

在这里插入图片描述

class Solution {// 设置点的最大数量private static final int MAXN = 10001;// 设置边的最大数量private static final int MAXM = 10001;// head数组private static final int[] head = new int[MAXN];// next数组private static final int[] next = new int[MAXM];// to数组private static final int[] to = new int[MAXM];// indegree数组(统计入度)private static final int[] indegree = new int[MAXN];// cnt统计边的数量private static int cnt = 1;// 添加边的方法(顺便统计入度)private static void addEdge(int u, int v){next[cnt] = head[u];to[cnt] = v;head[u] = cnt++;indegree[v]++;}// 初始化静态空间(只需要清空head以及indegree数组)然后建图(这里是有向带权图)private static void build(int n, int[][] edges){cnt = 1;for(int i = 0; i <= n; i++){indegree[i] = 0;head[i] = 0;}for(int[] edge : edges){addEdge(edge[1], edge[0]);}}// 拓扑排序(topoSort的板子)private static int[] topoSort(int n){// 首先创建一个队列(将来可以作为结果返回)int[] queue = new int[n];int l = 0;int r = 0;// 遍历入度表, 添加所有0入度的点进队列for(int i = 0; i < n; i++){if(indegree[i] == 0){queue[r++] = i;}}// 利用链式前向星的遍历开始跑拓扑排序int elemCnt = 0;while(l < r){int cur = queue[l++];elemCnt++;for(int ei = head[cur]; ei != 0; ei = next[ei]){if(--indegree[to[ei]] == 0){queue[r++] = to[ei];}}}return elemCnt == n ? queue : new int[0];}public int[] findOrder(int numCourses, int[][] prerequisites) {build(numCourses, prerequisites);return topoSort(numCourses);}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/61600.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

易语言学习-cnblog

易语言数据类型 数值转换命令&#xff08;自己学&#xff09; 数值到大写&#xff08;&#xff09;将一个数值转换到中文读法&#xff0c;第二个参数为是否为简体。 数值到大写&#xff08;123.44&#xff0c;假&#xff09; 猜测结果 数值到金额&#xff08;&#xff09;将双…

atob()为啥明明表示base64toASCII却叫atob?(2)

上篇谈到JavaScript中的atob()函数实际是表示ASCII to binary而非ASCII to base64&#xff0c;那既然函数底层产生的是二进制内容&#xff0c;那为什么咱们在JavaScript环境中通过atob()解码可以直接得到字符串&#xff1f;答案下文揭晓ෆ( ˶ᵕ˶)ෆ 在JavaScript中&#x…

树莓派的开机自启

前言 很多比赛你的装置是不能动的,就是你直接拿上去,不允许用电脑启动. 树莓派开机自启的三种方式 1,快捷方式自启动 就是在我们用户的目录下(他这里是/home/pi,我的是/home/zw),ctrlh可以显示隐藏文件价, #没有就找你自己的用户目录 cd /.config#在这里面建一个autostart文…

Day10_CSS过度动画

Day10_CSS过度动画 背景 : PC和APP项目我们已经开发完毕, 但是再真正开发的时候有些有些简易的动态效果我们可以使用CSS完成 ; 本节课我们来使用CSS完成基础的动画效果 今日学习目标 CSS3过度CSS3平面动态效果CSS3动画效果案例 1. CSS3过渡 ​ 含义 :过渡指的是元素从一种…

vue3-基于element-plus实现定制化动态表单及校验

基础版 这里不会对表单进行封装处理 <template><div style="margin: 0 auto; width: 1200px"><el-formref="formRef"style="max-width: 600px; margin-top: 20px":model="dynamicValidateForm"label-width="auto…

go语言闭包捕获的是变量的引用而不是变量的值

在 Go 语言中&#xff0c;闭包捕获的是变量的引用&#xff0c;而不是变量的值。这意味着闭包会引用循环变量或外部变量的实际内存位置&#xff0c;而不是在闭包创建时复制变量的值。这种行为有时会导致意外的结果&#xff0c;尤其是在循环中创建多个闭包时。 闭包捕获变量的引…

操作系统进程和线程——针对实习面试

目录 操作系统进程和线程什么是进程和线程&#xff1f;进程和线程的区别&#xff1f;进程有哪些状态&#xff1f;什么是线程安全&#xff1f;如何实现线程安全&#xff1f;什么是线程安全&#xff1f;如何实现线程安全&#xff1f; 进程间的通信有哪几种方式&#xff1f;什么是…

Vue3中的祖孙组件通信——provideinject

在 Vue 3 中&#xff0c;provide 和 inject 是一对用于依赖注入的 API&#xff0c;可以在组件树中共享数据或功能&#xff0c;而无需通过 props 明确传递或使用事件进行通信。这对于管理共享状态、配置或服务特别有用。 provide 和 inject 的工作原理 provide&#xff1a;在父…

MyBatis——#{} 和 ${} 的区别和动态 SQL

1. #{} 和 ${} 的区别 为了方便&#xff0c;接下来使用注解方式来演示&#xff1a; #{} 的 SQL 语句中的参数是用过 ? 来起到类似于占位符的作用&#xff0c;而 ${} 是直接进行参数替换&#xff0c;这种直接替换的即时 SQL 就可能会出现一个问题 当传入一个字符串时&#xff…

图像处理 之 凸包和最小外围轮廓生成

“ 最小包围轮廓之美” 一起来欣赏图形之美~ 1.原始图片 男人牵着机器狗 2.轮廓提取 轮廓提取 3.最小包围轮廓 最小包围轮廓 4.凸包 凸包 5.凸包和最小包围轮廓的合照 凸包和最小包围轮廓的合照 上述图片中凸包、最小外围轮廓效果为作者实现算法生成。 图形几何之美系列&#…

美畅物联丨智能分析,安全管控:视频汇聚平台助力智慧工地建设

随着科技的持续发展&#xff0c;建筑行业正朝着智能化的方向迅猛迈进。智慧工地作为建筑行业智能化的关键体现形式&#xff0c;借助各类先进技术来提升工地的管理效率、安全性以及生产效益。在这个过程中&#xff0c;视频汇聚平台发挥着极为重要的作用。以畅联AIoT开放云平台为…

2024亚太杯数学建模C题【Development Analyses and Strategies for Pet Industry 】思路详解

C&#xff1a;宠物行业及相关产业的发展分析与战略 随着人们消费观念的发展&#xff0c;宠物行业作为一个新兴产业&#xff0c;正在全球范围内逐渐积聚势头&#xff0c;这得益于快速的经济发展和人均收入的提高。1992年&#xff0c;中国小动物保护协会成立&#xff0c;随后1993…

React-自定义Hook与逻辑共享

#题引&#xff1a;我认为跟着官方文档学习不会走歪路 在 React 中&#xff0c;自定义 Hook 是一种复用逻辑的方式。自定义 Hook 是一个 JavaScript 函数&#xff0c;名称以 use 开头&#xff0c;可以调用其他的 Hook, 可以返回任意值。 创建自定义Hook 假设你正在开发一款重…

设计模式学习[8]---原型模式

文章目录 前言1.原理阐述2.举例 总结 前言 这个设计模式第一次听到&#xff0c;以为有点类似于软件工程中的一个开发模式&#xff0c;原型化开发模式。 原型化开发是软件开发的一种常用方法。开发人员对用户提出的问题进行总结&#xff0c;就系统的主要需求取得一致意见后&am…

安装spark

spark依赖java和scale。所以先安装java&#xff0c;再安装scale&#xff0c;再是spark。 总体教程跟着这个链接 我跟着这个教程走安装java链接&#xff0c;但是有一些不同&#xff0c;原教程有一些错误&#xff0c;在环境变量设置的地方。 java 首先下载jdk。 先看自己的环境…

MACOS开发、使用常见问题汇总

MACOS常见问题 本文记录使用macos遇到的常见问题&#xff0c;后面会持续更新&#xff0c;觉得有用的可以收藏一下。 打不开xxx.app&#xff0c;因为它来自身份不明的开发者解决方法(开启任何来源) 打开终端&#xff08;Terminal&#xff09;程序 拷贝sudo spctl --master-di…

【MySQL实战45讲笔记】基础篇——深入浅出索引(上)

系列文章 基础篇——MySQL 的基础架构 基础篇——redo log 和 binlog 基础篇——事务隔离 目录 系列文章深入浅出索引&#xff08;上&#xff09;4.1 索引的常见模型4.2 InnoDB 的索引模型4.3 索引维护4.4 思考&#xff1a;为什么要重建索引以及如何做&#xff1f; 深入浅出索…

深入理解电子邮件安全:SPF、DKIM 和 DMARC 完全指南

引言 在当今数字时代&#xff0c;电子邮件已经成为我们日常通信中不可或缺的一部分。然而&#xff0c;随之而来的安全问题也日益突出。邮件欺诈、钓鱼攻击和垃圾邮件等威胁不断增加&#xff0c;这促使了多种邮件安全验证机制的出现。本文将深入探讨三个最重要的邮件安全协议&a…

C++:shared_from_this()应用在异步任务中的应用

shared_from_this() 的主要用途是安全地创建 std::shared_ptr 实例来管理当前对象的生命周期&#xff0c;确保对象在异步任务或新线程中不会在使用过程中被销毁。示例如下&#xff1a; 示例代码&#xff1a; #include <iostream> #include <memory> #include <…

vue-quill-editor富文本组件二次封装,上传图片是base64的图片回显异常,进行自定义上传

<template><div><QuillEditor ref"myQuillEditor" theme"snow" :content"modelValue" :options"data.editorOption" contentType"html" update:content"setValue" /><!-- 使用自定义图片上传…