Elasticsearch:更好的二进制量化(BBQ)对比乘积量化(PQ)

作者:来自 Elastic  Benjamin Trent

为什么我们选择花时间研究更好的二进制量化而不是在 Lucene 和 Elasticsearch 中进行生产量化。

我们一直在逐步使 Elasticsearch 和 Lucene 的向量搜索变得更快、更实惠。我们的主要重点不仅是通过 SIMD 提高搜索速度,而且还通过标量量化降低成本。首先是 4 倍,然后是 8 倍。然而,这还不够。通过乘积量化(Product Quantization 简称 PQ)等技术,可以在不显著降低召回率的情况下实现 32 倍的减少。我们需要实现更高级别的量化,以在速度和成本之间提供足够的权衡。

一种实现这一目标的方法是专注于 PQ(乘积量化)。另一种则是直接改进二值量化。剧透如下:

  • BBQ 的向量量化速度比 PQ 快 10-50 倍
  • BBQ 的查询速度比 PQ 快 2-4 倍
  • BBQ 的召回率与 PQ 相当或更好

那么,我们到底测试了什么?结果如何?

我们到底要测试什么?

从理论上讲,PQ 和 Better Binary Quantization(BBQ) 都有各种优缺点。但我们需要一套静态的标准来测试两者。拥有一个独立的 “优点和缺点(pros & cons)” 列表是一种过于定性的衡量标准。当然,事物有不同的好处,但我们希望有一套定量的标准来帮助我们做出决策。这遵循了类似于 Rich Hickey 解释的决策矩阵的模式。

我们的标准是:

  • 搜索速度
  • 索引速度平稳
  • 使用 HNSW 的索引速度
  • 合并速度
  • 内存减少可能
  • 该算法是否众所周知并在生产环境中经过实战测试?
  • 粗粒度聚类是否绝对必要?或者,该算法如何公平地只使用一个质心
  • 需要强力(brute force)过采样才能实现 95% 的召回率
  • HNSW 索引仍然有效,并且可以在与强力类似的重新排序下实现 +90% 的召回率

显然,几乎所有标准都是可衡量的,我们确实有一个我们认为重要的定性标准。对于未来的可支持性,成为一种众所周知的算法很重要,如果所有其他措施都与之相关,这可能是决策的转折点。

我们如何测试它?

Lucene 和 Elasticsearch 都是用 Java 编写的,因此我们直接用 Java 编写了两个概念证明。这样,我们就可以在性能上进行同类比较。另外,在进行乘积量化(Product Quantization, PQ)时,我们仅测试了最高 32 倍的空间压缩。虽然 PQ 可以通过减少码本数量(code books)进一步压缩空间,但我们发现对于许多模型来说,召回率会迅速下降到不可接受的水平,从而需要更高比例的过采样。

此外,由于优化 PQ(Optimized PQ)对计算资源要求较高,我们没有采用这种技术。

我们测试了不同的数据集和相似性指标。特别是:

  • e5Small,它只有 384 个维度,与其他模型相比,它的向量空间相当窄。你可以在我们的位向量博客中看到 e5small 的简单二进制量化表现有多差。因此,我们希望确保二进制量化的演变能够处理这样的模型。
  • Cohere 的 v3 模型,它有 1024 个维度,并且喜欢被量化。如果量化方法不适用于此方法,那么它可能不适用于任何模型。
  • Cohere 的 v2 模型有 768 个维度,其出色的性能依赖于最大内积的非欧几里得向量空间。我们希望确保它能够像乘积量化一样处理非欧几里得空间。

我们在基于 ARM 的 MacBook 上进行了本地测试,并在更大的 x86 机器上进行了远程测试,以确保无论 CPU 架构如何,我们发现的任何性能差异都是可重复的。

那么,结果如何呢?

e5small quora

这是一个较小的数据集,使用 e5small 构建了 522k 个向量。它的维度很少,嵌入空间很窄,因此无法与简单的二进制量化一起使用。由于 BBQ 是二进制量化的演变,因此验证它与 PQ 相比在如此不利的模型下是否有效非常重要。

在 M1 Max ARM 笔记本电脑上测试:

Algorithmquantization build time (ms)brute-force latency (ms)brute-force recall @ 10:50hnsw build time (ms)hnsw recall @ 10:100hnsw latency (ms)
BBQ10411199%10481796%0.25
Product Quantization593972099%23966096%0.45

CohereV3

此模型在量化方面表现出色。我们希望在单个粗粒度质心中处理更多向量(30M),以确保我们的小规模结果实际上可以转化为更多向量。

此测试是在 Google Cloud 中一台更大的 x86 机器上进行的:

Algorithmquantization build time (ms)brute-force latency (ms)brute-force recall @ 10:50hnsw build time (ms)hnsw recall @ 10:100hnsw latency (ms)
BBQ998363177698%4004322990%0.6
Product Quantization13116553579098%N/AN/AN/A

当谈到类似召回率的索引和搜索速度时,BBQ 显然是赢家。

内积搜索和 BBQ

我们在其他实验中注意到,在量化时,非欧几里得搜索可能很难准确实现。此外,简单的二值量化对向量的大小不敏感,而向量大小对于内积计算至关重要。

带着这个需要注意的点(脚注),我们花了几天时间研究代数,调整查询估算最后阶段的校正措施。结果是:成功了!

Algorithmrecall 10:10recall 10:20recall 10:30recall 10:40recall 10:50recall 10:100
BBQ71%87%93%95%96%99%
Product Quantization65%84%90%93%95%98%

就这样,圆满结束!

BBQ 与乘积量化的完整决策矩阵。

我们对更优二值量化(Better Binary Quantization, BBQ)感到非常兴奋!经过大量的尝试和验证,我们不断被其结果质量所惊艳 —— 每个向量维度仅保留 1 位信息就能达到如此效果。

敬请期待,它将在未来的 Elasticsearch 版本中与你见面!

Elasticsearch 包含许多新功能,助您构建适合各种场景的最佳搜索解决方案。欢迎查看我们的示例笔记本以了解更多,开启免费的云端试用,或在本地机器上体验 Elastic 的强大功能。

原文:Better Binary Quantization vs. Product Quantization - Search Labs

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/61288.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

检查课程是否有效

文章目录 概要整体架构流程技术细节小结 概要 这是一个微服务内部接口,当用户学习课程时,可能需要播放课程视频。此时提供视频播放功能的媒资系统就需要校验用户是否有播放视频的资格。所以,开发媒资服务(tj-media)的…

红外遥控报警器设计(模电课设)

一、设计要求 利用NE555p芯片设计制作报警器。要求当有人遮挡红外光时发出报警信号,无人遮挡红外光时报警器不工作,即不发声。 二、元器件 555芯片:NE555P 集成运放:LM358 三级管:2N1711 蜂鸣器:HY-30…

Spring MVC——针对实习面试

目录 Spring MVC什么是Spring MVC?简单介绍下你对Spring MVC的理解?Spring MVC的优点有哪些?Spring MVC的主要组件有哪些?Spring MVC的工作原理或流程是怎样的?Spring MVC常用注解有哪些? Spring MVC 什么是…

机器学习(贝叶斯算法,决策树)

朴素贝叶斯分类 贝叶斯分类理论 假设现有两个数据集,分为两类 我们现在用p1(x,y)表示数据点(x,y)属于类别1(图中红色圆点表示的类别)的概率,用p2(x,y)表示数据点(x,y)属于类别2(图中蓝色三角形表示的类别)的概率,那么对于一个新数据点(x,y)…

题目讲解18 有效的括号

原题链接: 20. 有效的括号 - 力扣(LeetCode) 思路分析: 第一步:先搭建一个数据结构——栈。 typedef char STDataType; typedef struct Stack {STDataType* arr;int top, capacity; } Stack;//初始化 void StackIn…

HarmonyOS笔记5:ArkUI框架的Navigation导航组件

ArkUI框架的Navigation导航组件 在移动应用中需要在不同的页面进行切换跳转。这种切换和跳转有两种方式:页面路由和Navigation组件实现导航。HarmonyOS推荐使用Navigation实现页面跳转。在本文中在HarmonyOS 5.0.0 Release SDK (API Version 12 Release)版本下&…

【C++】第九节:list

1、list的介绍及使用 1.1 list的介绍 list - C 参考 1.2 list的使用 1.2.1 list的构造 void TestList1() {list<int> l1; // 构造空的l1list<int> l2(4, 100); // l2中包含4个值为100的元素list<int> l3(l2.begin(), l2.end()); // 用l2的[begin(),end())…

Idea中创建和联系MySQL等数据库

备注&#xff1a;电脑中要已下好自己需要的MySQL数据库软件 MySQL社区版下载链接&#xff1a; https://dev.mysql.com/downloads/installer/ 优点&#xff1a; 1.相比与在命令行中管理数据库&#xff0c;idea提供了图形化管理&#xff0c;简单明了&#xff1b; 2.便于与后端…

Linux_shell脚本if语句详细教程

前言 在 Linux Shell 脚本中&#xff0c;if 语句用于基于条件执行命令或代码块。它的基本语法结构如下&#xff1a; if 条件; then# 如果条件为真时执行的代码 elif 另一个条件; then# 如果另一个条件为真时执行的代码 else# 如果所有条件都不成立时执行的代码 fi一、if 语句…

Python自学之Colormaps指南

目录 1.色彩映射表&#xff08;Colormaps&#xff09;是什么&#xff1f; 2.Matplotlib中的色彩映射表类型 2.1同色渐变&#xff08;Sequential Colormaps&#xff09; 2.2双色渐变&#xff08;Divergence Colormaps&#xff09; 2.3定性色彩&#xff08;Qualitative Col…

利用redis的key失效监听器KeyExpirationEventMessageListener作任务定时提醒功能

某需求&#xff1a; 要求在任务截止日期的前3天时&#xff0c;系统自动给用户发一条消息提醒。 用定时任务的话感觉很不舒服。间隔时间不好弄。不能精准卡到那个点。 由于系统简单&#xff0c;没有使用消息列队&#xff0c;也不能使用延时队列来做。 用Timer的话开销还挺大的&a…

从视频帧生成点云数据、使用PointNet++模型提取特征,并将特征保存下来的完整实现。

文件地址 https://github.com/yanx27/Pointnet_Pointnet2_pytorch?spm5176.28103460.0.0.21a95d27ollfze Pointnet_Pointnet2_pytorch\log\classification\pointnet2_ssg_wo_normals文件夹改名为Pointnet_Pointnet2_pytorch\log\classification\pointnet2_cls_ssg "E:…

高效工具推荐:基于WebGPU的Whisper Web结合内网穿透远程使用指南

文章目录 前言1.本地部署Whisper Web1.1 安装git1.2 安装Node.js1.3 运行项目 2. Whisper Web使用介绍3. 安装Cpolar内网穿透4. 配置公网地址5. 公网访问测试6. 配置固定公网地址 前言 OpenAI开源的 Whisper 语音转文本模型效果都说还不错&#xff0c;今天就给大家推荐 GitHub…

大数据学习16之Spark-Core

1. 概述 1.1.简介 Apache Spark 是专门为大规模数据处理而设计的快速通用的计算引擎。 一种类似 Hadoop MapReduce 的通用并行计算框架&#xff0c;它拥有MapReduce的优点&#xff0c;不同于MR的是Job中间结果可以缓存在内存中&#xff0c;从而不需要读取HDFS&#xff0c;减少…

Go语言跨平台桌面应用开发新纪元:LCL、CEF与Webview全解析

开篇寄语 在Go语言的广阔生态中&#xff0c;桌面应用开发一直是一个备受关注的领域。今天&#xff0c;我将为大家介绍三款基于Go语言的跨平台桌面应用开发框架——LCL、CEF与Webview&#xff0c;它们分别拥有独特的魅力和广泛的应用场景。通过这三款框架&#xff0c;你将能够轻…

机器学习day5-随机森林和线性代数1最小二乘法

十 集成学习方法之随机森林 集成学习的基本思想就是将多个分类器组合&#xff0c;从而实现一个预测效果更好的集成分类器。大致可以分为&#xff1a;Bagging&#xff0c;Boosting 和 Stacking 三大类型。 &#xff08;1&#xff09;每次有放回地从训练集中取出 n 个训练样本&…

Excel使用-弹窗“此工作簿包含到一个或多个可能不安全的外部源的链接”的发生与处理

文章目录 前言一、探讨问题发生原因1.引入外部公式2.引入外部数据验证二、问题现象排查及解决1.排查公式2.排查数据验证3.特殊处理方式总结前言 作为一种常用的办公软件,Excel被大家所熟知。尽管使用了多年,有时候在使用Excel时候也会发生一些不太常见的现象,需要用心核查下…

跨越网络边界:IPv6与零信任架构的深度融合

2024年&#xff0c;工信部发布了《关于开展“网络去NAT”专项工作 进一步深化IPv6部署应用的通知》&#xff0c;加速了国内网络由IPv4向IPv6的转型步伐。未来&#xff0c;各行各业将逐步去NAT&#xff0c;逐步向IPv6迁移。在此过程中&#xff0c;网络安全解决方案和产品能力将面…

从大数据到大模型:现代应用的数据范式

作者介绍&#xff1a;沈炼&#xff0c;蚂蚁数据部数据库内核负责人。2014年入职蚂蚁&#xff0c;承担蚂蚁集团的数据库架构职责&#xff0c;先后负责了核心链路上OceanBase&#xff0c;OceanBase高可用体系建设、NoSQL数据库产品建设。沈炼对互联网金融、数据库内核、数据库高可…

华为eNSP:MSTP

一、什么是MSTP&#xff1f; 1、MSTP是IEEE 802.1S中定义的生成树协议&#xff0c;MSTP兼容STP和RSTP&#xff0c;既可以快速收敛&#xff0c;也提供了数据转发的多个冗余路径&#xff0c;在数据转发过程中实现VLAN数据的负载均衡。 2、MSTP可以将一个或多个VLAN映射到一个Inst…