【项目实战】基于 LLaMA-Factory 通过 LoRA 微调 Qwen2

【项目实战】基于 LLaMAFactory 通过 LoRA 微调 Qwen2

  • 一、项目介绍
  • 二、环境准备
    • 1、环境准备
    • 2、安装LLaMa-Factory
    • 3、准备模型数据集
      • 3.1 模型准备
      • 3.2 数据集准备
  • 三、微调
    • 1、启动webui
    • 2、选择参数
    • 3、训练
  • 四、测试
  • 五、总结

一、项目介绍

在这里插入图片描述

        LLaMA-Factory是一个由北京航空航天大学的郑耀威开发的开源框架,作为一个功能强大且高效的大模型微调框架,通过其用户友好的界面和丰富的功能特性,为开发者提供了极大的便利。
项目官网:https://www.llamafactory.cn/
Github:https://github.com/hiyouga/LLaMA-Factory


二、环境准备

1、环境准备

  • Python 3.10.9
  • NVIDIA GeForce GTX 1650
  • CUDA和cuDNN

2、安装LLaMa-Factory

git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git

        进入项目目录,安装必要的Python依赖库。可以使用以下命令:

cd LLaMA-Factory
pip install -e ".[torch,metrics]"
#截止2024.11.16,github拉取的最新版本的requirements.txt
transformers>=4.41.2,<=4.46.1
datasets>=2.16.0,<=3.1.0
accelerate>=0.34.0,<=1.0.1
peft>=0.11.1,<=0.12.0
trl>=0.8.6,<=0.9.6
gradio>=4.0.0,<5.0.0
pandas>=2.0.0
scipy
einops
sentencepiece
tiktoken
protobuf
uvicorn
pydantic
fastapi
sse-starlette
matplotlib>=3.7.0
fire
packaging
pyyaml
numpy<2.0.0
av

3、准备模型数据集

3.1 模型准备

        这里我们使用 Qwen2-0.5B 模型进行微调,首先下载模型,这里如果无法从Hugging Face上拉取的话,可以从国内模型库魔塔社区拉去,没有速度限制。

#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('qwen/Qwen2-0.5B',cache_dir="model/Qwen")

3.2 数据集准备

        LLaMA-Factory 内置了一些数据集,本次就使用内置的 identity 数据集,用于修改模型的自我意识,数据集格式:

#文件地址 LLaMA-Factory-main\data\identity.json
{"instruction": "Who are you?","input": "","output": "I am {{name}} an AI assistant developed by {{author}}. How can I assist you today?"},{"instruction": "What is your name?","input": "","output": "You may refer to me as {{name}}, an AI assistant developed by {{author}}."},{"instruction": "Do you have a name?","input": "","output": "As an AI assistant developed by {{author}}, I got the name {{name}}."},

        对于这个数据集进行大量训练后,会修改模型的自我意识,比如修改前:我的名字是通义千问;修改后:我的名字是{{name}}。


三、微调

1、启动webui

        启动webui:llamafactory-cli webui,出现如下提示和页面表示启动成功:

(torch3) D:\AIProject\LLaMA-Factory-main>llamafactory-cli webui
Running on local URL:  http://0.0.0.0:7860To create a public link, set `share=True` in `launch()`.

在这里插入图片描述


2、选择参数

        主要选择:模型、训练数据集、训练参数(此处不多介绍,按照下图选择)

在这里插入图片描述


3、训练

        点击训练,等待即可,训练结束后会出现训练完毕字样,并且会显示出Loss曲线。
在这里插入图片描述

模型训练过程

在这里插入图片描述


四、测试

        在模型训练完成后,可以通过Evaluate & Predict(通过评估数据集评估性能)、Chat(直接与模型对话)。此处选择后者,更直观的展示模型训练效果。
        模型依旧选择基座模型,检查点选择训练完模型保存的地址,点击加载模型,即可开始与模型对话。

在这里插入图片描述


五、总结

        本文章记录了LLaMA-Factory在本地的部署以及使用,从最后的测试效果发现训练的效果其实并不理想,不过初有成效,初步判断和数据集规模训练轮数以及参数配置等有关,后期将针对这些方面进行相应的调整,争取达到目标效果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/60970.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第23课-C++-红黑树的插入与旋转

&#x1f307;前言 红黑树是一种自平衡的二叉搜索树&#xff0c;因其出色的性能&#xff0c;广泛应用于实际中。Linux 内核中的 CFS 调度器便是一个使用红黑树的例子&#xff0c;这足以说明它的重要性。红黑树的实现通过红黑两种颜色的控制来维持平衡&#xff0c;并在必要时使…

基于 CentOS7.6 的 Docker 下载常用的容器(MySQLRedisMongoDB),解决拉取容器镜像失败问题

安装MySQL&Redis&MongoDB mysql选择是8版本&#xff0c;redis是选择4版本、mongoDB选择最新版&#xff0c;也可以根据自己的需要进行下载对应的版本&#xff0c;无非就是容器名:版本号 这样去拉去相关的容器镜像。如果你还不会在服务器中安装 docker&#xff0c;可以查…

C#/WinForm拖拽文件上传

一、首先创建一个上传文件的类&#xff0c;继承Control类&#xff0c;如下&#xff1a; public class UploadControl : Control{private Image _image;public UploadControl(){this.SetStyle(ControlStyles.UserPaint | //控件自行绘制&#xff0c;而不使用操作系统的绘制Cont…

ubuntu将firewall-config导出为.deb文件

firewall-config ubuntu是canonial 公司维护的&#xff0c;用wireshark测过&#xff0c;开机会给他们公司发遥测&#xff08;开了ufw阻塞所有连接也一样&#xff0c;canonial在里面把代码改了&#xff09;firewall-config是fedora(爱好者维护&#xff0c;公益版本)自带的防火墙…

蓝桥杯备考——算法

一、排序 冒泡排序、选择排序、插入排序、 快速排序、归并排序、桶排序 二、枚举 三、二分查找与二分答案 四、搜索&#xff08;DFS&#xff09; DFS&#xff08;DFS基础、回溯、剪枝、记忆化&#xff09; 1.DFS算法&#xff08;深度优先搜索算法&#xff09; 深度优先搜…

Javascript垃圾回收机制-运行机制(大厂内部培训版本)

前言 计算机基本组成&#xff1a; 我们编写的软件首先读取到内存&#xff0c;用于提供给 CPU 进行运算处理。 内存的读取和释放&#xff0c;决定了程序性能。 冯诺依曼结构 解释和编译 这两个概念怎么理解呢。 编译相当于事先已经完成了可以直接用。好比去饭店吃饭点完上…

ffmpeg+D3D实现的MFC音视频播放器,支持录像、截图、音视频播放、码流信息显示等功能

一、简介 本播放器是在vs2019 x86下开发&#xff0c;通过ffmpeg实现拉流解码功能&#xff0c;通过D3D实现视频的渲染功能。截图功能采用libjpeg实现&#xff0c;可以截取jpg图片&#xff0c;图片的默认保存路径是在C:\MYRecPath中。录像功能采用封装好的类Mp4Record实现&#x…

NodeJS 百度智能云文本转语音(实测)

现在文本转语音的技术已经非常完善了&#xff0c;尽管网络上有许多免费的工具&#xff0c;还是测试了专业的服务&#xff0c;选择了百度的TTS服务。 于是&#xff0c;在百度智能云注册和开通了文本转语音的服务&#xff0c;尝试使用NodeJS 实现文本转语音服务。但是百度的文档实…

信也科技和云杉网络的AI可观测性实践分享

1. 信也科技 2、云杉网络 2.1 中国移动

解析煤矿一张图

解析煤矿一张图 ​ 煤矿一张图是指通过数字化、智能化技术将煤矿的各项信息、数据和资源进行集中展示和管理&#xff0c;形成一个综合的可视化平台。这一平台将矿井的地理信息、设备状态、人员位置、安全生产、环境监测等信息整合成一个统一的“图形”&#xff0c;以便于管理者…

SpringBootTest常见错误解决

1.启动类所在包错误 问题 由于启动类所在包与需要自动注入的类的包不在一个包下&#xff1a; 启动类所在包&#xff1a; com.exmaple.test_02 但是对于需要注入的类却不在com.exmaple.test_02下或者其子包下&#xff0c;就会导致启动类无法扫描到该类&#xff0c;从而无法对…

Java 全栈知识体系

包含: Java 基础, Java 部分源码, JVM, Spring, Spring Boot, Spring Cloud, 数据库原理, MySQL, ElasticSearch, MongoDB, Docker, k8s, CI&CD, Linux, DevOps, 分布式, 中间件, 开发工具, Git, IDE, 源码阅读&#xff0c;读书笔记, 开源项目...

高效管理生产线:哪些项目管理工具最适合制造企业?

制造业的生产管理往往涉及复杂的流程和多部门协作&#xff0c;如何确保各环节顺利对接、信息准确传递&#xff0c;是每一家制造企业都在不断优化的问题。面对这些管理难题&#xff0c;越来越多的制造企业引入了项目管理软件&#xff0c;通过直观的任务分配、进度跟踪、数据反馈…

微信小程序 https://thirdwx.qlogo.cn 不在以下 downloadFile 合法域名列表中

授权登录后&#xff0c;拿到用户头像进行加载&#xff0c;但报错提示&#xff1a; https://thirdwx.qlogo.cn 不在以下 downloadFile 合法域名列表中 解决方法一&#xff08;未完全解决&#xff0c;临时处理&#xff09;&#xff1a;在微信开发者工具将不校验...勾上就可以访问…

Android - Pixel 6a 手机OS 由 Android 15 降级到 Android 14 操作记录

Pixel 6a 手机由 Android 14 升级到 Android 15了&#xff0c;但是由于一些原因又想降级回 Android 14&#xff0c; 能降吗&#xff1f;该怎么降级呢&#xff1f;本篇文章来记述实际操作过程&#xff0c;希望能给想做相同操作的人一些帮助。 答案当然是能降&#xff0c;而且我…

SOL链上Meme生态的崛起与未来#Dapp开发#链游#交易所#公链搭建

近年来&#xff0c;随着区块链技术的普及和NFT文化的流行&#xff0c;meme&#xff08;网络迷因&#xff09;逐渐成为区块链生态中的重要组成部分。meme不仅是一种互联网文化符号&#xff0c;更逐步渗透进了去中心化金融&#xff08;DeFi&#xff09;、NFT和元宇宙等多个领域&a…

C++模板特化实战:在使用开源库boost::geometry::index::rtree时,用特化来让其支持自己的数据类型

用自己定义的数据结构作为rtree的key。 // rTree的key struct OverlapKey {using BDPoint boost::geometry::model::point<double, 3, boost::geometry::cs::cartesian>; //双精度的点using MyRTree boost::geometry::index::rtree<OverlapKey, boost::geometry::in…

面试编程题目(一)细菌总数计算

题目如图&#xff1a; 第一题&#xff1a; import lombok.AllArgsConstructor; import lombok.Data;import java.util.Arrays; import java.util.Collections; import java.util.List;/*** description: 细菌实体类* author: zhangmy* Version: 1.0* create: 2021-03-30 11:2…

论文阅读《Neural Map Prior for Autonomous Driving》

目录 摘要1 介绍2 相关工作 摘要 高精&#xff08;HD&#xff09;语义地图对于在城市环境中行驶的自动驾驶汽车至关重要。传统的离线高精地图是通过劳动密集型的手动标注创建的&#xff0c;不仅成本高昂&#xff0c;而且无法及时更新。最近&#xff0c;研究人员提出根据在线传…

计算机网络 (5)数据通信的基础知识

前言 数据通信是一种以信息处理技术和计算机技术为基础的通信方式&#xff0c;它通过数据通信系统将数据以某种信号方式从一处传送到另一处&#xff0c;为计算机网络的应用和发展提供了技术支持和可靠的通信环境&#xff0c;是现代通信技术的关键部分。 一、数据通信的基本概念…