python+智谱AI-实现钉钉消息自动回复

python+智谱AI-实现钉钉消息自动回复

  • 实现了电脑窗口切换,截图识别未读消息,与语言模型交互后,将答案带入到钉钉窗口中。
    • 偷个懒,直接贴代码了,后续不断完善注释,如果遇到读不懂的地方,欢迎交流。

实现了电脑窗口切换,截图识别未读消息,与语言模型交互后,将答案带入到钉钉窗口中。

偷个懒,直接贴代码了,后续不断完善注释,如果遇到读不懂的地方,欢迎交流。

# -*- coding: UTF-8 -*-
import time
# 必备的注释文件
import pygetwindow
from PIL import ImageGrab,Image
import time
import cv2
import numpy as np
import pyautogui
import easyocr
import  os
import pytesseract
import zhipuai
from zhipuai import ZhipuAI
import pyperclip
# from win10toast import ToastNotifier
import tkinter as tk
# def toastmsg(msg):
#
#     toaster = ToastNotifier()
#     toaster.show_toast("钉钉回复工具", msg, duration=10)
# 打开对话框
def openchat(xm,ym):# # 显示结果# cv2.imshow('Detected Red Points', image)# cv2.waitKey(0)# cv2.destroyAllWindows()# 要点击屏幕上的那个点# 移动鼠标到图标位置pyautogui.moveTo(xm, ym, duration=1)time.sleep(2)# 点击图标pyautogui.click(xm, ym)
# 识别对话框中的文字
def watchtext(imgurl):print('识别图片')# 读取图片image = cv2.imread(imgurl)# 图片预处理,例如灰度化、二值化等gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)[1]# 使用pytesseract识别文字pytesseract.pytesseract.tesseract_cmd = r'D:\Program Files\Tesseract-OCR\tesseract.exe'text = pytesseract.image_to_string(thresh, lang='chi_sim')print(text)# 另外一个工具# 设为中英文混合识别:ch_sim enreader = easyocr.Reader(['ch_sim', 'en'], gpu=False)# 识别图片## print(str(os.path) + '/' + imgurl)# result = reader.readtext(imgurl, detail=0)# for i in result:#     # 输出识别出的信息#     # 输出识别出的信息#     # print('输出识别出的信息')#     print(i, end='')#     做一下图片的裁剪再识别:ch_sim enimg = Image.open(imgurl)# 获取图片大小img_size = img.size# h = img_size[1] #图片高度# w = img_size[0] #图片宽度# 设置截取部分相对位置x = 0.20 * img_size[0]+200y = 0.1 * img_size[1]# y = 350w = 1 * img_size[0]-400h = 1* img_size[1]-720# 截取图片cropped = img.crop((x, y, x + w, y + h))  # (x1,y1,x2,y2)# 保存截图图片,命名为test.pngcropped.save('test01.png')# 设为中英文混合识别:ch_sim enreader = easyocr.Reader(['ch_sim', 'en'], gpu=False, verbose=False)# 路径改为用户需要识别的图片的路径result = reader.readtext('test01.png', detail=0)for i in result:# 输出识别出的信息# 输出识别出的信息# print('输出识别出的信息')print(i, end='')return result
# 截图保存
def getmscreen():windowsjiantou  = pygetwindow.getWindowsWithTitle('XXXX')windowsjiantou[0].show()w = windowsjiantou[0]w.activate()# 获取桌面窗口的坐标和尺寸left, top, width, height = w.left, w.top, w.width, w.heightw.activate()w.show()# 将窗口最大化w.maximize()# 下面的单位是5秒time.sleep(0.5)print('运行到了这里')# 使用ImageGrab.grab()方法截取桌面screenshot = ImageGrab.grab(bbox=(left, top, left + width, top + height))# 获取当前时间的时间戳timestamp = time.time()print("当前时间戳:", timestamp)imgurl =  str(timestamp)+'desktop_screenshot.png'# 保存截图# screenshot.save(imgurl)img = pyautogui.screenshot()img.save(str(timestamp)+'desktop_screenshot.png')return imgurl
def getchat(questiontext):print(questiontext)# 接入质谱AI的APIclient = ZhipuAI(api_key=" . ")  # 请填写您自己的APIKeyresponse = client.chat.completions.create(model="glm-4",  # 填写需要调用的模型名称  OA表单中选不到项目的添加方法messages=[{"role": "user", "content": questiontext},],tools=[{"type": "retrieval","retrieval": {"knowledge_id": " ","prompt_template": "从文档\n\"\"\"\n{{knowledge}}\n\"\"\"\n中找问题\n\"\"\"\n{{question}}\n\"\"\"\n的答案,找到答案就仅使用文档语句回答问题,找不到答案就用自身知识回答并且告诉用户该信息不是来自文档。\n不要复述问题,直接开始回答。"}}],stream=True,)resstr = ""for chunk in response:# print(chunk.choices[0].delta)resstr = resstr + str(chunk.choices[0].delta.content)# print(chunk.choices[0].delta.content)print(resstr)# 做一个data,把数据返回去return resstr
def pasttext(text):windowsjiantou  = pygetwindow.getWindowsWithTitle('XXXX')windowsjiantou[0].show()w = windowsjiantou[0]w.activate()# 移动鼠标到目标位置(这里以屏幕坐标为例)pyautogui.moveTo(600, 900)# 模拟鼠标点击pyautogui.click()# 模拟键盘输入# pyautogui.typewrite('你好www', interval=0.2)# # 模拟按下Win键# pyautogui.press("win")# # 输入中文输入法的名称,例如“微软拼音输入法”# pyautogui.typewrite("微软拼音输入法")# # 模拟按下回车键# pyautogui.press("enter")# # 等待中文输入法启动# pyautogui.sleep(1)# # 输入中文字符# pyautogui.typewrite("你好,世界!")pyperclip.copy(text)time.sleep(0.5)pyautogui.hotkey('ctrl', 'v')# pyperclip.paste()
def capture():# toastmsg('程序运行中')# 获取桌面窗口# desktop_window = pygetwindow.getDesktopWindow()desktop_window = pygetwindow.getAllWindows()desktop_window_title = pygetwindow.getAllTitles()for window in desktop_window_title:print(window)windowsjiantou  = pygetwindow.getWindowsWithTitle('XXXX')windowsjiantou[0].show()w = windowsjiantou[0]w.activate()# 获取桌面窗口的坐标和尺寸left, top, width, height = w.left, w.top, w.width, w.heightw.activate()w.show()# 将窗口最大化w.maximize()# 下面的单位是5秒time.sleep(0.5)print('运行到了这里')# 使用ImageGrab.grab()方法截取桌面screenshot = ImageGrab.grab(bbox=(left, top, left + width, top + height))# 获取当前时间的时间戳timestamp = time.time()print("当前时间戳:", timestamp)# 保存截图screenshot.save(str(timestamp)+'desktop_screenshot.png')# 读取图片上的红点# 识别图片imgs =str(timestamp)+'desktop_screenshot.png'# 读取图像image = cv2.imread(imgs)# 读取图像# 将图像从BGR转换为HSV颜色空间hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)# 定义红色的HSV范围lower_red1 = np.array([0, 120, 70])upper_red1 = np.array([10, 255, 255])lower_red2 = np.array([170, 120, 70])upper_red2 = np.array([180, 255, 255])# 创建掩码mask1 = cv2.inRange(hsv, lower_red1, upper_red1)mask2 = cv2.inRange(hsv, lower_red2, upper_red2)mask = cv2.bitwise_or(mask1, mask2)# 形态学操作以去除噪声kernel = np.ones((5, 5), np.uint8)mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)mask = cv2.dilate(mask, kernel, iterations=1)# 寻找轮廓  这里满足要求的轮廓已经放到这里数组里了contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)myusecolours = []# 绘制轮廓for contour in contours:# 计算轮廓的面积# 先留下面积大于100的轮廓area = cv2.contourArea(contour)if area > 50:  # 可以根据实际情况调整这个阈值print('面积大于50')# 计算轮廓的周长perimeter = cv2.arcLength(contour, True)# 计算轮廓的近似形状# approxPolyDP 函数用于计算轮廓的近似形状# approxPolyDPapprox = cv2.approxPolyDP(contour, 0.04 * perimeter, True)# 如果轮廓是圆形,那么近似形状的顶点数量应该接近于0# 但是这里我直接用半径来判断if len(approx) < 10:(x, y), radius = cv2.minEnclosingCircle(contour)center = (int(x), int(y))radius = int(radius)if radius > 5:  # 可以根据实际情况调整这个阈值  圆角值改小了一点# 使用cv2.circle() 在原图上绘制筛选后的圆形轮廓。print('绘制了一个图形print')cv2.circle(image, center, radius, (0, 255, 0), 2)# 这里是通过考验的contour# 获取contour 的坐标print(contour)myusecolours.append(contour)# 显示结果# cv2.imshow('Contours', image)# cv2.waitKey(0)# cv2.destroyAllWindows()print('----')myusecolours02 =myusecoloursmyusecolours02.reverse()print(len(myusecolours02))print(len(myusecolours02))if len(myusecolours02) == 0:returncontoursmsg = myusecolours02[-1]# if len(myusecolours02) < 3:#     contoursmsg = myusecolours02[2]### # 获取第一条未读消息# if len(myusecolours02) < 2:#     contoursmsg = myusecolours02[1]## if len(myusecolours02) < 1:#     contoursmsg = myusecolours02[0]# 获取坐标x, y, w, h = cv2.boundingRect(contoursmsg)# 打印边界框坐标print(f"Bounding box coordinates: x={x}, y={y}, w={w}, h={h}")# 得到中心点的位置(xm, ym), radius = cv2.minEnclosingCircle(contoursmsg)print(f"Bounding box coordinates: ----------------------------  x={xm}, y={ym}")# 打开对话框openchat(xm,ym)# 截图imgurl = getmscreen()# 识别对话框中的文字textcontent = watchtext(imgurl)# print(textcontent)textcontent02 = ''for item in textcontent:print(item+'\n')textcontent02= textcontent02+item+''# 获取最后一条消息# textcontent.reverse()# lasttext = textcontent[0]# print('最新的一条消息')# print(lasttext)# 调用API开始聊天--最后一条消息textcontent.reverse()textcontent01 = textcontent[0]answer = getchat(textcontent01)# 调用API开始聊天--所有识别的内容# answer = getchat(textcontent02)# 将内容粘贴到钉钉窗口中pasttext(answer)# toastmsg('程序运完毕')# print(desktop_window)# print(desktop_window_title)# # 获取桌面窗口的坐标和尺寸# left, top, width, height = desktop_window.left, desktop_window.top, desktop_window.width, desktop_window.height## # 使用ImageGrab.grab()方法截取桌面# screenshot = ImageGrab.grab(bbox=(left, top, left + width, top + height))## # 保存截图# screenshot.save('desktop_screenshot.png')
def say_hello():capture()
if __name__ == '__main__':# 先来屏幕截图capture()# root = tk.Tk()# root.geometry("400x500")# # 禁止用户调整窗口大小# root.resizable(False, False)## label = tk.Label(root, text=" ", font=("Microsoft YaHei", 16))# label.pack(pady=20)### label = tk.Label(root, text="点击 接管电脑 后,程序会识别未读消息并到知识库中进行检索填充回复。对信息修改勾,可以进行发送,或者设置自动发送",wraplength=300, font=("Microsoft YaHei", 16))# label.pack(pady=20)#### button = tk.Button(root, text="接管电脑", command=say_hello)# button.pack(pady=20)## root.mainloop()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/60241.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

贪心算法day3(最长递增序列问题)

目录 1.最长递增三元子序列 2.最长连续递增序列 1.最长递增三元子序列 题目链接&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 思路&#xff1a;我们只需要设置两个数进行比较就好。设a为nums[0]&#xff0c;b 为一个无穷大的数&#xff0c;只要有比a小的数字就赋值…

在CentOS7传统部署wordpress

1 环境准备 所需环境说明CentOS7.9ip地址&#xff1a;10.0.0.7&#xff0c;可以上网PHP72系列软件下面会介绍MySQL数据库暴露端口3306&#xff0c;用户wordpress&#xff0c;库wordpressnginx版本任意wordpres v6.5.2代码下载地址&#xff1a;https://cn.wordpress.org/wordpr…

文献阅读 | Nature Methods:使用 STAMP 对空间转录组进行可解释的空间感知降维

文献介绍 文献题目&#xff1a; 使用 STAMP 对空间转录组进行可解释的空间感知降维 研究团队&#xff1a; 陈金妙&#xff08;新加坡科学技术研究局&#xff09; 发表时间&#xff1a; 2024-10-15 发表期刊&#xff1a; Nature Methods 影响因子&#xff1a; 36.1&#xff0…

vs2022搭建opencv开发环境

1 下载OpenCV库 https://opencv.org/ 下载对应版本然后进行安装 将bin目录添加到系统环境变量opencv\build\x64\vc16\bin 复制该路径 打开高级设置添加环境变量 vs2022新建一个空项目 修改属性添加头文件路径和库路径 修改链接器&#xff0c;将OpenCV中lib库里的o…

GA/T1400视图库平台EasyCVR多品牌摄像机视频平台前端监控摄像头镜头的基础知识

在现代安全监控系统中&#xff0c;摄像机镜头作为捕捉图像的关键组件&#xff0c;其选择和应用直接影响到监控图像的质量和系统的整体性能。随着技术的发展&#xff0c;摄像机镜头的种类和功能也在不断扩展&#xff0c;以适应各种复杂的监控环境和需求。对于相机成像来讲&#…

省级数字经济发展水平数据(2011-2022年)

数字经济是指以数据资源为关键要素&#xff0c;以现代信息网络为主要载体&#xff0c;以信息通信技术融合应用、全要素数字化转型为重要推动力&#xff0c;促进公平与效率更加统一的新经济形态。 2011-2022年省级数字经济发展水平数据&#xff08;&#xff09;.zip资源-CSDN文…

【WRF模拟】全过程总结:WPS预处理及WRF运行

【WRF模拟】全过程总结:WPS预处理及WRF运行 1 数据准备1.1 嵌套域设置(Customize domain)-基于QGis中gis4wrf插件1.2 静态地理数据1.2.1 叶面积指数LAI和植被覆盖度Fpar(月尺度)1.2.2 地面反照率(月尺度)1.2.3 土地利用类型+不透水面积1.2.4 数据处理:geotiff→tiff(W…

银行家算法(模拟)

银行家算法是一种避免死锁的有效算法&#xff0c;它借鉴了银行家贷款的策略。在分配资源之前&#xff0c;银行家会检查系统是否有足够的资源满足进程的最大需求&#xff0c;若有&#xff0c;则暂时分配资源&#xff0c;然后继续检查剩余资源是否足够满足其他进程的最大需求。只…

「QT」几何数据类 之 QSizeF 浮点型尺寸类

✨博客主页何曾参静谧的博客&#x1f4cc;文章专栏「QT」QT5程序设计&#x1f4da;全部专栏「VS」Visual Studio「C/C」C/C程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasolid…

【动手学电机驱动】STM32-FOC(3)STM32 三路互补 PWM 输出

STM32-FOC&#xff08;1&#xff09;STM32 电机控制的软件开发环境 STM32-FOC&#xff08;2&#xff09;STM32 导入和创建项目 STM32-FOC&#xff08;3&#xff09;STM32 三路互补 PWM 输出 STM32-FOC&#xff08;4&#xff09;IHM03 电机控制套件介绍 STM32-FOC&#xff08;5&…

Spark中的shuffle

Shuffle的本质基于磁盘划分来解决分布式大数据量的全局分组、全局排序、重新分区【增大】的问题。 1、Spark的Shuffle设计 Spark Shuffle过程也叫作宽依赖过程&#xff0c;Spark不完全依赖于内存计算&#xff0c;面临以上问题时&#xff0c;也需要Shuffle过程。 2、Spark中哪…

ffmpeg 视频滤镜:屏蔽边框杂色- fillborders

滤镜描述 fillborders 官网链接 > FFmpeg Filters Documentation fillborders滤镜有几种方式帮你屏蔽边框的杂色、不好的图案。 滤镜使用 参数 left <int> ..FV.....T. set the left fill border (from 0 to INT_MAX) (default 0)right …

「C/C++」C++标准库 之 #include<iostream> 标准输入输出

✨博客主页何曾参静谧的博客&#x1f4cc;文章专栏「C/C」C/C程序设计&#x1f4da;全部专栏「VS」Visual Studio「C/C」C/C程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasoli…

智能合约在供应链金融中的应用

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 智能合约在供应链金融中的应用 智能合约在供应链金融中的应用 智能合约在供应链金融中的应用 引言 智能合约概述 定义与原理 发展…

设计模式之责任链模式(Chain Of Responsibility)

一、责任链模式介绍 1、责任链模式介绍 职责链模式(chain of responsibility pattern) 定义: 避免将一个请求的发送者与接收者耦合在 一起&#xff0c;让多个对象都有机会处理请求。将接收请求的对象连接成一条链&#xff0c;并且沿着这条链 传递请求&#xff0c;直到有一个对…

C语言中的 printf( ) 与 scanf( )

时隔多日&#xff0c;小编我又回来咯小编相信之前的博客能够给大家带来不少的收获。在我们之前的文章中&#xff0c;许多代码块的例子都用到了printf( ) 与 scanf( )这两个函数&#xff0c;大家都知道他们需要声明头文件之后才能使用&#xff0c;那这两个函数是什么呢&#xff…

数字乡村解决方案-1

1. 政策背景与新时代党建 党的十九大报告提出新时代党建总要求&#xff0c;强调乡村治理在国家治理体系中的重要性&#xff0c;并作为实现乡村振兴战略的基石。提出按照产业兴旺、生态宜居、乡风文明、治理有效、生活富裕的总要求&#xff0c;推进乡村治理体系和治理能力现代化…

栈和队列相关题 , 用队列实现栈, 用栈实现队列 ,设计循环队列 C/C++双版本

文章目录 1.用队列实现栈2.用栈实现队列3. 设计循环队列 1.用队列实现栈 225. 用队列实现栈 思路&#xff1a; 使用两个队列&#xff0c;始终保持一个队列为空。 当我们需要进行压栈操作时&#xff0c;将数据压入不为空的队列中&#xff08;若两个都为空&#xff0c;则随便压…

零基础入门进程间通信:task 1(匿名管道与vscode使用)

目录 引言 VSCODE使用 进程间通信正题 基础背景 进程间通信分类 匿名管道 理解匿名管道 代码实现 匿名管道的特性 管道的四种情况 应用场景 引言 在当今的计算机技术领域&#xff0c;操作系统作为计算机系统的核心组件&#xff0c;承担着资源管理、任务调度和进程管…

#渗透测试#SRC漏洞挖掘#Python自动化脚本的编写04之通过面向对象编程学生管理信息系统01

免责声明 本教程仅为合法的教学目的而准备&#xff0c;严禁用于任何形式的违法犯罪活动及其他商业行为&#xff0c;在使用本教程前&#xff0c;您应确保该行为符合当地的法律法规&#xff0c;继续阅读即表示您需自行承担所有操作的后果&#xff0c;如有异议&#xff0c;请立即停…