【路径规划】PID搜索算法PSA求解UAV路径规划

摘要

本文研究了基于PID搜索算法(PID Search Algorithm, PSA)求解无人机(UAV)路径规划问题。通过引入PID控制思想来控制路径生成过程,使得无人机可以避开障碍物并在复杂地形中寻找最优路径。实验结果表明,PSA在路径平滑性和避障方面具有显著优势,同时通过PID调整提高了路径规划的效率。

理论

PID控制是一种广泛应用于控制系统的反馈调节算法,通过比例(P)、积分(I)和微分(D)三个部分的调节,控制系统能保持稳定。将PID控制应用于路径规划中,PSA可以在路径搜索过程中动态调整路径,避免进入无效区域。PSA通过反馈调节,无人机能够在不同地形和障碍物配置下适应环境,实现平稳路径规划。

实验结果

实验中,设置了起点和终点,以及多个不可通过的区域(障碍物),并通过PSA算法进行路径规划。

  • 三维路径图(见图1):展示了PSA在三维地形中的路径规划效果,路径成功避开了障碍物(粉色区域),从起点到达终点。

  • 二维平面图(见图2和图3):图2为高程图背景下的路径规划结果,图3为等高线背景下的路径。均显示出PSA在平滑路径方面的优越性。

  • 收敛曲线(见图4):显示了PSA在200次迭代中的适应度值变化。可以看到,算法在前期快速收敛并在后期保持稳定,表明PSA具有良好的收敛性能和稳定性。

部分代码

% 初始化参数
start = [0, 0, 0]; % 起点坐标
goal = [150, 100, 3]; % 终点坐标
obstacles = [50, 2; 100, 1.5; 30, 2.5]; % 障碍物位置及高度
numIterations = 200; % 迭代次数% 初始化PID控制参数
Kp = 0.5; Ki = 0.1; Kd = 0.05;
path = []; % 存储路径点
currentPoint = start;% PSA路径规划过程
for iter = 1:numIterations% 计算当前位置到目标的误差error = goal - currentPoint;% PID控制计算controlSignal = Kp * error + Ki * sum(error) + Kd * (error - prevError);newPoint = currentPoint + controlSignal;% 检查新点是否在障碍物区域内if ~isInObstacle(newPoint, obstacles)path = [path; newPoint];currentPoint = newPoint;end% 更新前一个误差prevError = error;% 检查是否到达目标if norm(currentPoint - goal) < 1break;end
end% 绘制路径
figure;
plot3(path(:,1), path(:,2), path(:,3), 'r-', 'LineWidth', 2); hold on;
scatter3(start(1), start(2), start(3), 'bs', 'DisplayName', '起点');
scatter3(goal(1), goal(2), goal(3), 'g*', 'DisplayName', '终点');
for obs = 1:size(obstacles,1)drawObstacle(obstacles(obs,:)); % 绘制障碍物
end
legend('路径', '起点', '终点', '障碍物');

参考文献

  1. Astrom, K. J., & Hagglund, T. (1995). PID Controllers: Theory, Design, and Tuning. ISA.

  2. Ruan, Y., & Zhang, X. (2018). PID-based Path Planning for UAVs in Dynamic Environments. International Journal of Control, 91(9), 2117-2130.

  3. Zhao, Y., & Liu, L. (2021). Path Planning Algorithms for Autonomous UAVs: A Survey. Aerospace Science and Technology, 112, 106637.

(文章内容仅供参考,具体效果以图片为准)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/59984.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【大数据学习 | kafka高级部分】kafka的数据同步和数据均衡

1. 数据同步 通过上图我们发现每个分区的数据都不一样&#xff0c;但是三个分区对外的数据却是一致的 这个时候如果第二个副本宕机了 但是如果是leader副本宕机了会发生什么呢&#xff1f; 2. 数据均衡 在线上程序运行的时候&#xff0c;有的时候因为上面副本的损坏&#xff…

java:使用Multi-Release Jar改造Java 1.7项目增加module-info.class以全面合规Java 9模块化规范

common-java是一个我维护了好多年的一个基础项目,编译目标为Java 1.7 现在整个团队的项目要做Java 9以上的技术迁移准备,就需要对这个在内部各项目中被广泛引用的基础项目进行改造,以适合Java 9的模块化规范。 Automatic-Module-Name Java 9的模块化规范(即Java Platform Mod…

机器视觉基础—双目相机

机器视觉基础—双目相机与立体视觉 双目相机概念与测量原理 我们多视几何的基础就在于是需要不同的相机拍摄的同一个物体的视场是由重合的区域的。通过下面的这种几何模型的目的是要得到估计物体的长度&#xff0c;或者说是离这个相机的距离。&#xff08;深度信息&#xff09…

C++继承(图文非常详细)

继承的概念 1.什么是继承 1.简单定义 我们来看一下下面这串代码注意其中的两个类father 和 son using namespace std; #include<iostream> class father { public:void definity(){cout << "father" << endl;} protected:int tall 180;int age …

【机器学习】均方误差根(RMSE:Root Mean Squared Error)

均方误差根&#xff08;Root Mean Squared Error&#xff0c;RMSE&#xff09;是机器学习和统计学中常用的误差度量指标&#xff0c;用于评估预测值与真实值之间的差异。它通常用于回归模型的评价&#xff0c;以衡量模型的预测精度。 RMSE的定义与公式 给定预测值 和实际值 …

Pandas | 数据分析时将特定列转换为数字类型 float64 或 int64的方法

类型转换 传统方法astype使用value_counts统计通过apply替换并使用astype转换 pd.to_numericx对连续变量进行转化⭐参数&#xff1a;返回值&#xff1a;示例代码&#xff1a; isnull不会检查空字符串 数据准备 有一组数据信息如下&#xff0c;其中主要将TotalCharges、MonthlyC…

混沌工程遇上AI:智能化系统韧性测试的前沿实践

#作者&#xff1a;曹付江 文章目录 1、什么是AI驱动的混沌工程&#xff1f;2、AI与混沌工程结合的价值3、技术实现3.1 AI模型开发3.1.1模型选择与构建3.1.2模型训练3.1.3 模型验证与调参3.1.4 模型测试3.1.5 知识库建设与持续学习 4、混沌工程与AI实践结合4.1 利用AI从运维专家…

《深度学习神经网络:颠覆生活的魔法科技与未来发展新航向》

深度学习神经网络对我们生活的影响 一、医疗领域 深度学习神经网络在医疗领域的应用可谓意义重大。在疾病诊断方面&#xff0c;它能够精准分析医疗影像&#xff0c;如通过对大量的 CT、MRI 图像进行深度学习&#xff0c;快速准确地识别出微小的肿瘤病变&#xff0c;为医生提供…

YOLOv11融合特征细化前馈网络 FRFN[CVPR2024]及相关改进思路

YOLOv11v10v8使用教程&#xff1a; YOLOv11入门到入土使用教程 一、 模块介绍 论文链接&#xff1a;Adapt or Rerish 代码链接&#xff1a;https://github.com/joshyZhou/AST 论文速览&#xff1a;基于 transformer 的方法在图像恢复任务中取得了有希望的性能&#xff0c;因为…

K8S简单部署,以及UI界面配置

准备两台服务器K8Smaster和K8Sminion 分别在两台服务器上执行以下代码 #添加hosts解析&#xff1b; cat >/etc/hosts<<EOF 127.0.0.1 localhost localhost.localdomain 192.168.45.133 master1 192.168.45.135 node2 EOF #临时关闭selinux和防火墙&#xff1b; sed …

爬虫 - 二手交易电商平台数据采集 (一)

背景: 近期有一个需求需要采集某电商网站平台的商品数据进行分析。因此&#xff0c;我计划先用Python实现一个简单的版本&#xff0c;以快速测试技术的实现可能性&#xff0c;再用PHP实现一个更完整的版本。文章中涉及的技术仅为学习和测试用途&#xff0c;请勿用于商业或非法用…

Chrome与傲游浏览器性能与功能的深度对比

在当今数字化时代&#xff0c;浏览器作为我们日常上网冲浪、工作学习的重要工具&#xff0c;其性能与功能直接影响着我们的使用体验。本文将对Chrome和傲游两款主流浏览器进行深度对比&#xff0c;帮助用户更好地了解它们的差异&#xff0c;以便做出更合适的选择。&#xff08;…

大华乐橙设备私有平台EasyCVR视频设备轨迹回放平台支持哪些摄像机?摄像机如何选型?

在现代安全监控系统中&#xff0c;视频监控设备扮演着至关重要的角色。视频设备轨迹回放平台EasyCVR以其卓越的兼容性和灵活性&#xff0c;支持接入多种品牌和类型的摄像机。这不仅为用户提供了广泛的选择空间&#xff0c;也使得视频监控系统的构建和管理变得更加高效和便捷。本…

数据结构 栈和队列

目录 1. 栈1.1 栈的概念及结构1.2 栈的实现 2. 队列2.1 队列的概念及结构2.2 队列的实现 正文开始 1. 栈 1.1 栈的概念及结构 栈是线性表的一种&#xff0c;这种数据结构只允许在固定的一端进行插入和删除元素的操作&#xff0c;进行数据插入和删除的一端称为栈顶&#xff0c…

Cross Modal Transformer: Towards Fast and Robust 3D Object Detection

代码地址 https://github.com/junjie18/CMT 1. 引言 在本文中&#xff0c;我们提出了Cross-Modal Transformer&#xff08;CMT&#xff09;&#xff0c;这是一种简单而有效的端到端管道&#xff0c;用于鲁棒的3D对象检测&#xff08;见图1&#xff08;c&#xff09;&#xf…

深度学习鲁棒性、公平性和泛化性的联系

深度学习鲁棒性、公平性和泛化性的联系 前言1 鲁棒性、公平性、泛化性本质2 对抗攻击是混杂效应3 因果推理角度3.1 稳定学习 VS 公平性3.2 后门攻击 前言 读研好不容易从边缘智能&#xff0c;费好大劲被允许转到联邦学习赛道&#xff0c;再费了好大劲和机缘巧合被允许转到可信A…

【Vue】简易博客项目跟做

项目框架搭建 1.使用vue create快速搭建vue项目 2.使用VC Code打开新生成的项目 端口号简单配置 修改vue.config.js文件&#xff0c;内容修改如下 所需库安装 npm install vue-resource --save --no-fund npm install vue-router3 --save --no-fund npm install axios --save …

python爬虫指南——初学者避坑篇

目录 Python爬虫初学者学习指南一、学习方向二、Python爬虫知识点总结三、具体知识点详解和实现步骤1. HTTP请求和HTML解析2. 正则表达式提取数据3. 动态内容爬取4. 数据存储5. 反爬虫应对措施 四、完整案例&#xff1a;爬取京东商品信息1. 导入库和设置基本信息2. 获取网页内容…

一文学习Android中的Treeview

在Android开发中&#xff0c;TreeView是一种用于显示层次结构的组件&#xff0c;可以让用户展开和折叠子项&#xff0c;以方便查看数据的不同层次。TreeView在文件系统、组织架构、目录结构等场景中非常有用&#xff0c;尽管Android并未提供内置的TreeView控件&#xff0c;但可…

如何快速搭建一个spring boot项目

一、准备工作 1.1 安装JDK&#xff1a;确保计算机上已安装Java Development Kit (JDK) 8或更高版本、并配置了环境变量 1.2 安装Maven&#xff1a;下载并安装Maven构建工具&#xff0c;这是Spring Boot官方推荐的构建工具。 1.3 安装代码编辑器&#xff1a;这里推荐使用Inte…