神经网络基础--什么是神经网络?? 常用激活函数是什么???

前言

  • 本专栏更新神经网络的一些基础知识;
  • 案例代码基于pytorch;
  • 欢迎收藏 + 关注, 本人将会持续更新。

神经网络

1、什么是神经网络

人工神经网络( Artificial Neural Network, 简写为ANN)也简称为神经网络(NN),是一种模仿生物神经网络结构和功能的 计算模型。

高中学生物的时候,我们可以发现在生物的神经网络中,由一个个神经元连接而成,在每个神经元中传递各种复杂的信号,在树突中输入信号,然后对信号进行处理,在轴突中输出信号这一过程。生物神经网络如图:

在这里插入图片描述

从生物的神经网络中可以看出,神经网络由神经元、树突、轴突所构成,当细胞核电量收集到一定程度的时候,会向数突发送电信号,电信号经过各种处理,最终会在轴突中输出。

2、人工神经网络

人工神经网络(ANN)实际上就是模拟生物神经网络的过程,神经网络可以看作由很多神经元所构成的,一个神经元中树突接收信号,然后进行处理,在轴突中输出信号,换算成人工神经网络中即有三部分构成:输入层、隐藏层、输出层所构成,一个简单的模拟神经元如图:

在这里插入图片描述

从上图可以看出,当接收到输入信号的时候,对信号要进行加权计算,最后输出的过程。其中w叫做权重,b叫做偏置,和之前学的斜率和截距相比有着更加专业的名称。

由多个神经元所构成自然就成为了神经网络,如图:

在这里插入图片描述

在神经网络中信号只是单方向移动,大概过程就是:

  1. 输入层:接收信号,可以看作的输入X
  2. 隐藏层:处理信号,对输入的数据进行各种线性和非线性变换,去拟合
  3. 输出层,输出信号,可以看作是Y

神经网络的作用:可以看作是一个万能的函数拟合器,拟合各种分布规律的点。

3、总结

神经网络是从生物神经网络中产生的,由很多神经元所有构成,每个神经元又包含输入层、隐藏层、输出层,从而发现数据的规律。

激活函数

1、非线性因素

线性:可以用一个线性方差来表示,如一元线性方程、多元线性方程……

非线性:在高中数学中,我们可以发现,实际应用很少数据规律是符合线性的,因为生活中的数据总是收到多个因素的影响,包括很多不确定因素的影响,数据分布可能符合:指数、对数、指对结合、三角结合…………

神经网络:从上面的神经网络图中可以发现,线性拟合可以经过不同神经元之间的权重和偏置进行拟合,而非线性因素需要引入激活函数,引入了激活函数后,神经网络就可以拟合各种曲线,逼近各种函数了,那什么是激活函数呢?请看下面讲解。

2、常见的激活函数

sigmoid

简介

表达式

f ( x ) = 1 1 + e − x \mathrm{f(x)=\frac1{1+e^{-x}}} f(x)=1+ex1

图像以及其导函数的图像

在这里插入图片描述

分析可以得出

  • sigmoid函数值域为:(0, 1),即:可以将任何函数值都可以映射到(0, 1) 范围内
  • 函数值效果分析
    • (-6, 6)区间内,效果可以,输出值有区别,尤其是在(-3, 3)区间中,效果最好,输出值有明显区别
    • 当x在大于6,或者小于-6的时候,效果不佳,输出值没有说明区别
  • 导数图像分析:
    • 值域:(0, 0.25)
    • 当x在大于6,或者小于-6的时候,导数值接近为0,收敛平缓

使用场景

  • 用作激活函数不多,主要运用在二分类中,如逻辑回归,并且神经网络层数不能多,否则很容易到后面求出导数值为0
pytorch代码举例
import torch
import matplotlib.pyplot as plt 
import torch.nn.functional as F from pylab import mpl
mpl.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = Falsedef test():# 创建画板fig, axes = plt.subplots(1, 2)# 创建sigmoidx = torch.linspace(-20, 20, 1000)y = F.sigmoid(x)axes[0].plot(x, y)axes[0].grid()axes[0].set_title('Sigmoid 函数值')# 导函数x = torch.linspace(-20, 20, 1000, requires_grad=True)  # 最后一个参数,全程跟踪求导,并且将求导值存入 grad中# 求导torch.sigmoid(x).sum().backward()  # .backward() 以及任何被x直接或间接影响的、需要梯度的参数,将其值全部存储在 .grad 中# 绘图axes[1].plot(x.detach(), x.grad)   # .detach() 分离出x没有求导的值,x.grad存储求导的值axes[1].grid()axes[1].set_title('Sigmoid 导数值')if __name__ == '__main__':test()

输出图像如上图sigmoid所示。

tanh

简介

表达式

f ( x ) = 1 − e − 2 x 1 + e − 2 x \mathrm{f(x)=\frac{1-e^{-2x}}{1+e^{-2x}}} f(x)=1+e2x1e2x

图像及其导函数图像

在这里插入图片描述

分析

  • tanh的值域为:[-1, 1],即:任何函数值通过tanh函数都可以映射到:[-1, 1]区间
  • 关于源点0对称
  • 函数效果值分析
    • 在x属于[-3, 3]这个区域内,函数值映射效果区分度较大
    • 当x>3或者x<-3的时候,分别映射成 -1 与 1
  • 导数值分析
    • 值域:(0, 1)
    • 当x>3或者x<-3的时候,导数值为0
  • 与sigmoid函数区别
    • tanh函数收敛速度较快,运用范围较广
    • 查阅资料:可以搭配使用,隐藏层用tanh,输出层用sigmoid,用于二分类问题
pytorch代码举例
import torch 
import matplotlib.pyplot as plt 
import torch.nn.functional as F from pylab import mpl
mpl.rcParams["font.sans-serif"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = Falsedef test():# 创建画板fig, axes = plt.subplots(1, 2)# tanh图像x = torch.linspace(-20, 20, 1000)y = F.tanh(x)axes[0].plot(x, y)axes[0].grid()axes[0].set_title('tanh 函数')# 导函数图像x = torch.linspace(-20, 20, 1000, requires_grad=True)torch.tanh(x).sum().backward()axes[1].plot(x.detach(), x.grad)axes[1].grid()axes[1].set_title('tanh 导数')plt.show()if __name__ == '__main__':test()

ReLu(最常用的)

简介

表达式

f ( x ) = m a x ( 0 , x ) \mathrm{f(x)=max~(0,x)} f(x)=max (0,x)

图像

在这里插入图片描述

分析

  • 当 x 值小于0的时候,映射成0,当 x 值大于 0 的时候,映射成它本身
  • 运算简单,效率高,容易通过线性变换非线性变换拟合任何函数,最常用

导函数图像

在这里插入图片描述

分析

  • 函数值小于0,则导函数为 0 ,函数值大于0,导数值为 1
  • ReLU 能够在x>0时保持梯度不衰减,从而缓解梯度消失问题。

缺点

  • 如果我们网络的参数采用随机初始化时,很多参数可能为负数,这就使得输入的正值会被舍去,而输入的负值则会保留,这可能在大部分的情况下并不是我们想要的结果
  • 随着训练的推进,部分输入会落入小于0区域,导致对应权重无法更新。这种现象被称为“神经元死亡”

SoftMax

用于多分类题目

简介

表达式

s o f t m a x ( z i ) = e z i ∑ j e z j softmax(z_{i})=\frac{e^{z_{i}}}{\sum_{j}e^{z_{j}}} softmax(zi)=jezjezi

在这里插入图片描述

Softmax 直白来说就是将网络输出的 logits 通过 softmax函数,就映射成为(0,1)的值,而这些值的累和为1(满足概率的性质),那么我们将它理解成概率,选取概率最大(也就是值对应最大的)节点,作为我们的预测目标类别

pytorch代码
import torch scores = torch.tensor([0.2, 0.02, 0.15, 0.15, 1.3, 0.5, 0.06, 1.1, 0.05, 3.75])
probabilities = torch.softmax(scores, dim=0)
print(probabilities)

3、总结

如何选取激活函数?

对于隐藏层:

  1. 优先选择RELU激活函数
  2. 如果ReLu效果不好,那么尝试其他激活,如Leaky ReLu等。
  3. 如果你使用了Relu, 需要注意一下Dead Relu问题, 避免出现大的梯度从而导致过多的神经元死亡。
  4. 不要使用sigmoid激活函数,可以尝试使用tanh激活函数

对于输出层:

  1. 二分类问题选择sigmoid激活函数
  2. 多分类问题选择softmax激活函数
  3. 回归问题选择identity激活函数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/59621.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

猫头虎分享: AI设计利器 Recraft详解与基础使用教程

&#x1f981;猫头虎分享&#xff1a;AI设计利器 Recraft——全面解析与教程 大家好&#xff0c;我是猫头虎&#xff01;今天为大家带来一款非常炙手可热的 AI 设计工具 —— Recraft 的深度介绍与详细教程。这款工具自推出以来&#xff0c;就迅速获得了全球设计师的青睐。那么…

Python进阶之IO操作

文章目录 一、文件的读取二、文件内容的写入三、之操作文件夹四、StringIO与BytesIO 一、文件的读取 在python里面&#xff0c;可以使用open函数来打开文件&#xff0c;具体语法如下&#xff1a; open(filename, mode)filename&#xff1a;文件名&#xff0c;一般包括该文件所…

《安富莱嵌入式周报》第345期:开源蓝牙游戏手柄,USB3.0 HUB带电压电流测量,LCR电桥前端模拟,开源微型赛车,RF信号扫描仪,开源无线电收发器

周报汇总地址&#xff1a;嵌入式周报 - uCOS & uCGUI & emWin & embOS & TouchGFX & ThreadX - 硬汉嵌入式论坛 - Powered by Discuz! 本周更新一期视频教程 第5期&#xff1a;RTX5/FreeRTOS全家桶源码工程综合实战模板集成CANopen组件&#xff08;2024-1…

「Mac畅玩鸿蒙与硬件20」鸿蒙UI组件篇10 - Canvas 组件自定义绘图

Canvas 组件在鸿蒙应用中用于绘制自定义图形&#xff0c;提供丰富的绘制功能和灵活的定制能力。通过 Canvas&#xff0c;可以创建矩形、圆形、路径、文本等基础图形&#xff0c;为鸿蒙应用增添个性化的视觉效果。本篇将介绍 Canvas 组件的基础操作&#xff0c;涵盖绘制矩形、圆…

用流量策略做多出口实验

一、拓扑&#xff1a; 二、配置过程&#xff1a; 1、配置 IP 地址&#xff0c;配置动态路由协议 OSPF 2、AR2 上&#xff0c;配置高级 ACL&#xff0c;允许 ospf 流量、1 到 6、2 到 8、deny 所有 3、写流分类&#xff0c;抓取流量特征 4、写流行为&#xff0c;配置流量动作 5、…

【Golang】sql.Null* 类型使用(处理空值和零值)

sql.NullString 和 sql.NullInt64 类型&#xff08;以及其他类似的 sql.Null* 类型&#xff09;在处理数据库操作时非常有用&#xff0c;尤其是在 Go 语言的 database/sql 包中。它们的主要用途包括&#xff1a; 表示 NULL 值&#xff1a; 在数据库中&#xff0c;NULL 表示“没…

【前端】如何在 JSX 中使用条件语句和循环

在 JSX 中使用条件语句和循环是常见的需求&#xff0c;尤其是在构建动态用户界面时。以下是如何在 JSX 中使用条件语句和循环的详细说明。 条件语句 1. 三元运算符 三元运算符是最简单的条件语句形式&#xff0c;适用于简单的条件判断。 const isLoggedIn true;const ele…

Rust移动开发:Rust在Android端集成使用介绍

Andorid调用Rust 目前Rust在移动端上的应用&#xff0c;一般作为应用sdk的提供&#xff0c;供各端使用&#xff0c;目前飞书底层使用Rust编写通用组件。 该篇适合对Android、Rust了解&#xff0c;想看如何做整合&#xff0c;如果想要工程源码&#xff0c;可以评论或留言有解疑…

UE hard/soft reference| DDX DDY | Unity pcg color

目录 1.虚幻引擎性能优化 &#xff08;附0跳转Unity对应机制&#xff09; hard reference and soft reference 1. 硬引用&#xff08;Hard Reference&#xff09; 2. 软引用&#xff08;Soft Reference&#xff09; 3. 使用原则 2.空间梯度转法线 DDX DDY节点 ​编辑 …

【UE5】一种老派的假反射做法,可以用于移动端,或对反射的速度、清晰度有需求的地方

没想到大家这篇文章呼声还挺高 这篇文章是对它的详细实现&#xff0c;建议在阅读本篇之前&#xff0c;先浏览一下前面的文章&#xff0c;以便更好地理解和掌握内容。 这种老派的假反射技术&#xff0c;适合用于移动端或对反射效果的速度和清晰度有较高要求的场合。该技术通过一…

前端学习Day12 CSS盒子的定位(相对定位篇“附练习”)

一、相对定位 使用相对定位的盒子会相对于自身原本的位置&#xff0c;通过偏移指定的距离&#xff0c;到达新的位置。盒子的本体仍处于文档流中。使用相对定位&#xff0c;除了要将 position 属性值设置为 relative 外&#xff0c;还需要指定一定的偏移量。其中&#xff0c;水…

基于微信小程序的移动学习平台的设计与实现+ssm(lw+演示+源码+运行)

摘 要 由于APP软件在开发以及运营上面所需成本较高&#xff0c;而用户手机需要安装各种APP软件&#xff0c;因此占用用户过多的手机存储空间&#xff0c;导致用户手机运行缓慢&#xff0c;体验度比较差&#xff0c;进而导致用户会卸载非必要的APP&#xff0c;倒逼管理者必须改…

git 工具原理

git 目录 git git的使用 了解git的三个区域 具体操作 如何下载别人上传到git的工程 -- 可以参考菜鸟教程&#xff0c;包括安装配置git Git 安装配置 | 菜鸟教程 -- Git 是一种分布式版本控制系统&#xff0c;用于管理软件项目的源代码。它是由 Linux 之父 Linus Torval…

Linux操作系统:学习进程_对进程的深入了解

目录 前言 开篇 一、进程概念 二、进程的描述与管理 1、如何描述与管理 2、Linux中的PCB-task_struct 3、对进程组织的理解 三、进程的属性 1、系统创建进程 2、查看进程 3、进程的标识符 4、退出进程 1>ctrlc 2>kill命令杀死进程 5、用户进程的创建方式…

力扣:225 用队列实现栈

栈、队列 栈&#xff1a; 弹夹&#xff0c;后进先出 队列&#xff1a; 排队&#xff0c;先进先出 描述&#xff1a; var MyStack function () {// 定义两个数组&#xff0c;模拟队列this.queue []this._queue [] };/** * param {number} x* return {void}*/ MyStack.protot…

lora训练模型 打造个人IP

准备工作 下载秋叶炼丹器整理自己的照片下载底膜 https://rentry.org/lycoris-experiments 实操步骤 解压整合包 lora-scripts,先点击“更新” 训练图片收集 比如要训练一个自己头像的模型&#xff0c;就可以拍一些自己的照片&#xff08;20-50张&#xff0c;最少15张&…

IO 多路复用技术:原理、类型及 Go 实现

文章目录 1. 引言IO 多路复用的应用场景与重要性高并发下的 IO 处理挑战 2. IO 多路复用概述什么是 IO 多路复用IO 多路复用的优点与适用场景 3. IO 多路复用的三种主要实现3.1 select3.2 poll3.3 epoll三者对比 4. 深入理解 epoll4.1 epoll 的三大操作4.2 epoll 的核心数据结构…

大数据新视界 -- 大数据大厂之 Impala 性能优化:从数据压缩到分析加速(下)(8/30)

&#x1f496;&#x1f496;&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎你们来到 青云交的博客&#xff01;能与你们在此邂逅&#xff0c;我满心欢喜&#xff0c;深感无比荣幸。在这个瞬息万变的时代&#xff0c;我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…

信息学奥赛一本通 1395:烦人的幻灯片(slides)

【题目链接】 ybt 1395&#xff1a;烦人的幻灯片(slides) 【题目考点】 1. 图论&#xff1a;拓扑排序 【解题思路】 先理解题意&#xff1a; 如图&#xff0c;每张幻灯片是一个矩形&#xff0c;在该矩形范围内有一个位置写了这张幻灯片的编号。但实际情况是幻灯片是透明…

DB-GPT系列(三):底层大模型设置(开源模型、在线模型)

前面两篇文章分别对 DB-GPT 的总体情况进行了介绍&#xff0c;同时涵盖了镜像一键部署与源码部署这两种部署方式。 DB-GPT系列&#xff08;一&#xff09;&#xff1a;DB-GPT能帮你做什么&#xff1f; DB-GPT系列&#xff08;二&#xff09;&#xff1a;DB-GPT部署&#xff0…