golang 实现比特币内核:处理椭圆曲线中的天文数字

在比特币密码学中,我们需要处理天文数字,这个数字是如此巨大,以至于它很容易超出我们宇宙中原子的总数,也许 64 位的值不足以表示这个数字,而像加、乘、幂这样的操作如果使用 64 位整数会导致溢出,因此我们可能需要借助 golang 的 big 包,我们将通过使用 big.Int 来表示其值字段来更改 FieldNumber 的代码,代码将如下所示:

package elliptic_curveimport ("fmt""math/big"
)//using big package to deal with Astronomical figurestype FieldElement struct {order *big.Int //field ordernum   *big.Int //value of the given element in the field
}func NewFieldElement(order *big.Int, num *big.Int) *FieldElement {/*constructor for FieldElement, its the __init__ if you are from python*/if order.Cmp(num) == -1 {err := fmt.Sprintf("Num not in the range from 0 to %v", order)panic(err)}return &FieldElement{order: order,num:   num,}
}func (f *FieldElement) String() string {//format the object to printable string//its __repr__ if you are from pythonreturn fmt.Sprintf("FieldElement{order: %v, num: %v}", *f.order, *f.num)
}func (f *FieldElement) EqualTo(other *FieldElement) bool {/*two field element is equal if their order and value are equal*/return f.order.Cmp(other.order) == 0 && f.num.Cmp(other.num) == 0
}func (f *FieldElement) checkOrder(other *FieldElement) {if f.order.Cmp(other.order) != 0 {panic("add need to do on field element with the same order")}
}func (f *FieldElement) Add(other *FieldElement) *FieldElement {f.checkOrder(other)//remember to do the modulurvar op big.Intreturn NewFieldElement(f.order, op.Mod(op.Add(f.num, other.num), f.order))
}func (f *FieldElement) Negate() *FieldElement {/*for a field element a, its negate is another element b in field such that(a + b) % order= 0(remember the modulur over order), because the value of elementin the field are smaller than its order, we can easily get the negate of a byorder - a,*/var op big.Intreturn NewFieldElement(f.order, op.Sub(f.order, f.num))
}func (f *FieldElement) Subtract(other *FieldElement) *FieldElement {//first find the negate of the other//add this and the negate of the otherreturn f.Add(other.Negate())
}func (f *FieldElement) Multiply(other *FieldElement) *FieldElement {f.checkOrder(other)//multiplie over modulur of ordervar op big.Intmul := op.Mul(f.num, other.num)return NewFieldElement(f.order, op.Mod(mul, f.order))
}func (f *FieldElement) Power(power *big.Int) *FieldElement {var op big.IntpowerRes := op.Exp(f.num, power, nil)modRes := op.Mod(powerRes, f.order)return NewFieldElement(f.order, modRes)
}func (f *FieldElement) ScalarMul(val *big.Int) *FieldElement {var op big.Intres := op.Mul(f.num, val)res = op.Mod(res, f.order)return NewFieldElement(f.order, res)
}

现在我们需要确保这些更改不会破坏我们的逻辑,让我们再次运行测试,在 main.go 中,我们有以下代码:

package mainimport (ecc "elliptic_curve""fmt""math/big""math/rand"
)func SolveField19MultiplieSet() {//randomly select a num from (1, 18)min := 1max := 18k := rand.Intn(max-min) + minfmt.Printf("randomly select k is : %d\n", k)element := ecc.NewFieldElement(big.NewInt(19), big.NewInt(int64(k)))for i := 0; i < 19; i++ {fmt.Printf("element %d multiplie with %d is %v\n", k, i,element.ScalarMul(big.NewInt(int64(i))))}}func main() {f44 := ecc.NewFieldElement(big.NewInt(57), big.NewInt(44))f33 := ecc.NewFieldElement(big.NewInt(57), big.NewInt(33))// 44 + 33 equal to (44+33) % 57 is 20res := f44.Add(f33)fmt.Printf("field element 44 add to field element 33 is : %v\n", res)//-44 is the negate of field element 44, which is 57 - 44 = 13fmt.Printf("negate of field element 44 is : %v\n", f44.Negate())fmt.Printf("field element 44 - 33 is : %v\n", f44.Subtract(f33))fmt.Printf("field element 33 - 44 is : %v\n", f33.Subtract(f44))//it is easy to check (11+33)%57 == 44//check (46 + 44) % 57 == 33fmt.Printf("check 46 + 44 over modulur 57 is %d\n", (46+44)%57)//check by field elementf46 := ecc.NewFieldElement(big.NewInt(57), big.NewInt(46))fmt.Printf("field element 46 + 44 is %v\n", f46.Add(f44))SolveField19MultiplieSet()
}

运行上述代码将获得以下结果:


field element 44 add to field element 33 is : FieldElement{order: 57, num: 20}
negate of field element 44 is : FieldElement{order: 57, num: 13}
field element 44 - 33 is : FieldElement{order: 57, num: 11}
field element 33 - 44 is : FieldElement{order: 57, num: 46}
check 46 + 44 over modulur 57 is 33
field element 46 + 44 is FieldElement{order: 57, num: 33}
randomly select k is : 2
element 2 multiplie with 0 is FieldElement{order: 19, num: 0}
element 2 multiplie with 1 is FieldElement{order: 19, num: 2}
element 2 multiplie with 2 is FieldElement{order: 19, num: 4}
element 2 multiplie with 3 is FieldElement{order: 19, num: 6}
element 2 multiplie with 4 is FieldElement{order: 19, num: 8}
element 2 multiplie with 5 is FieldElement{order: 19, num: 10}
element 2 multiplie with 6 is FieldElement{order: 19, num: 12}
element 2 multiplie with 7 is FieldElement{order: 19, num: 14}
element 2 multiplie with 8 is FieldElement{order: 19, num: 16}
element 2 multiplie with 9 is FieldElement{order: 19, num: 18}
element 2 multiplie with 10 is FieldElement{order: 19, num: 1}
element 2 multiplie with 11 is FieldElement{order: 19, num: 3}
element 2 multiplie with 12 is FieldElement{order: 19, num: 5}
element 2 multiplie with 13 is FieldElement{order: 19, num: 7}
element 2 multiplie with 14 is FieldElement{order: 19, num: 9}
element 2 multiplie with 15 is FieldElement{order: 19, num: 11}
element 2 multiplie with 16 is FieldElement{order: 19, num: 13}
element 2 multiplie with 17 is FieldElement{order: 19, num: 15}
element 2 multiplie with 18 is FieldElement{order: 19, num: 17}

通过检查结果,我们可以确保 FieldElement 中的更改不会破坏我们之前的逻辑。现在让我们考虑以下问题:
p = 7, 11, 17, 19, 31,以下集合会是什么:
{1 ^(p-1), 2 ^ (p-1), … (p-1)^(p-1)}
让我们在 main.go 中编写代码来解决它:


func ComputeFieldOrderPower() {orders := []int{7, 11, 17, 31}for _, p := range orders {fmt.Printf("value of p is: %d\n", p)for i := 1; i < p; i++ {elm := ecc.NewFieldElement(big.NewInt(int64(p)), big.NewInt(int64(i)))fmt.Printf("for element: %v, its power of p - 1 is: %v\n", elm,elm.Power(big.NewInt(int64(p-1))))}fmt.Println("-------------------------------")}
}func main() {ComputeFieldOrderPower()
}

结果如下:

value of p is: 7
for element: FieldElement{order: 7, num: 1}, its power of p - 1 is: FieldElement{order: 7, num: 1}
for element: FieldElement{order: 7, num: 2}, its power of p - 1 is: FieldElement{order: 7, num: 1}
for element: FieldElement{order: 7, num: 3}, its power of p - 1 is: FieldElement{order: 7, num: 1}
for element: FieldElement{order: 7, num: 4}, its power of p - 1 is: FieldElement{order: 7, num: 1}
for element: FieldElement{order: 7, num: 5}, its power of p - 1 is: FieldElement{order: 7, num: 1}
for element: FieldElement{order: 7, num: 6}, its power of p - 1 is: FieldElement{order: 7, num: 1}
-------------------------------
value of p is: 11
for element: FieldElement{order: 11, num: 1}, its power of p - 1 is: FieldElement{order: 11, num: 1}
for element: FieldElement{order: 11, num: 2}, its power of p - 1 is: FieldElement{order: 11, num: 1}
for element: FieldElement{order: 11, num: 3}, its power of p - 1 is: FieldElement{order: 11, num: 1}
for element: FieldElement{order: 11, num: 4}, its power of p - 1 is: FieldElement{order: 11, num: 1}
for element: FieldElement{order: 11, num: 5}, its power of p - 1 is: FieldElement{order: 11, num: 1}
for element: FieldElement{order: 11, num: 6}, its power of p - 1 is: FieldElement{order: 11, num: 1}
for element: FieldElement{order: 11, num: 7}, its power of p - 1 is: FieldElement{order: 11, num: 1}
for element: FieldElement{order: 11, num: 8}, its power of p - 1 is: FieldElement{order: 11, num: 1}
for element: FieldElement{order: 11, num: 9}, its power of p - 1 is: FieldElement{order: 11, num: 1}
for element: FieldElement{order: 11, num: 10}, its power of p - 1 is: FieldElement{order: 11, num: 1}
-------------------------------
value of p is: 17
for element: FieldElement{order: 17, num: 1}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 2}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 3}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 4}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 5}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 6}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 7}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 8}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 9}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 10}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 11}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 12}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 13}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 14}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 15}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 16}, its power of p - 1 is: FieldElement{order: 17, num: 1}
-------------------------------
value of p is: 31
for element: FieldElement{order: 31, num: 1}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 2}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 3}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 4}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 5}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 6}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 7}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 8}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 9}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 10}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 11}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 12}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 13}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 14}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 15}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 16}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 17}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 18}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 19}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 20}, its power of p - 1 is: FieldElement{order: 31, num: 1}
my@MACdeMacBook-Air bitcoin % go run main.go
value of p is: 7
for element: FieldElement{order: 7, num: 1}, its power of p - 1 is: FieldElement{order: 7, num: 1}
for element: FieldElement{order: 7, num: 2}, its power of p - 1 is: FieldElement{order: 7, num: 1}
for element: FieldElement{order: 7, num: 3}, its power of p - 1 is: FieldElement{order: 7, num: 1}
for element: FieldElement{order: 7, num: 4}, its power of p - 1 is: FieldElement{order: 7, num: 1}
for element: FieldElement{order: 7, num: 5}, its power of p - 1 is: FieldElement{order: 7, num: 1}
for element: FieldElement{order: 7, num: 6}, its power of p - 1 is: FieldElement{order: 7, num: 1}
-------------------------------
value of p is: 11
for element: FieldElement{order: 11, num: 1}, its power of p - 1 is: FieldElement{order: 11, num: 1}
for element: FieldElement{order: 11, num: 2}, its power of p - 1 is: FieldElement{order: 11, num: 1}
for element: FieldElement{order: 11, num: 3}, its power of p - 1 is: FieldElement{order: 11, num: 1}
for element: FieldElement{order: 11, num: 4}, its power of p - 1 is: FieldElement{order: 11, num: 1}
for element: FieldElement{order: 11, num: 5}, its power of p - 1 is: FieldElement{order: 11, num: 1}
for element: FieldElement{order: 11, num: 6}, its power of p - 1 is: FieldElement{order: 11, num: 1}
for element: FieldElement{order: 11, num: 7}, its power of p - 1 is: FieldElement{order: 11, num: 1}
for element: FieldElement{order: 11, num: 8}, its power of p - 1 is: FieldElement{order: 11, num: 1}
for element: FieldElement{order: 11, num: 9}, its power of p - 1 is: FieldElement{order: 11, num: 1}
for element: FieldElement{order: 11, num: 10}, its power of p - 1 is: FieldElement{order: 11, num: 1}
-------------------------------
value of p is: 17
for element: FieldElement{order: 17, num: 1}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 2}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 3}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 4}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 5}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 6}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 7}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 8}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 9}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 10}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 11}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 12}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 13}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 14}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 15}, its power of p - 1 is: FieldElement{order: 17, num: 1}
for element: FieldElement{order: 17, num: 16}, its power of p - 1 is: FieldElement{order: 17, num: 1}
-------------------------------
value of p is: 19
for element: FieldElement{order: 19, num: 1}, its power of p - 1 is: FieldElement{order: 19, num: 1}
for element: FieldElement{order: 19, num: 2}, its power of p - 1 is: FieldElement{order: 19, num: 1}
for element: FieldElement{order: 19, num: 3}, its power of p - 1 is: FieldElement{order: 19, num: 1}
for element: FieldElement{order: 19, num: 4}, its power of p - 1 is: FieldElement{order: 19, num: 1}
for element: FieldElement{order: 19, num: 5}, its power of p - 1 is: FieldElement{order: 19, num: 1}
for element: FieldElement{order: 19, num: 6}, its power of p - 1 is: FieldElement{order: 19, num: 1}
for element: FieldElement{order: 19, num: 7}, its power of p - 1 is: FieldElement{order: 19, num: 1}
for element: FieldElement{order: 19, num: 8}, its power of p - 1 is: FieldElement{order: 19, num: 1}
for element: FieldElement{order: 19, num: 9}, its power of p - 1 is: FieldElement{order: 19, num: 1}
for element: FieldElement{order: 19, num: 10}, its power of p - 1 is: FieldElement{order: 19, num: 1}
for element: FieldElement{order: 19, num: 11}, its power of p - 1 is: FieldElement{order: 19, num: 1}
for element: FieldElement{order: 19, num: 12}, its power of p - 1 is: FieldElement{order: 19, num: 1}
for element: FieldElement{order: 19, num: 13}, its power of p - 1 is: FieldElement{order: 19, num: 1}
for element: FieldElement{order: 19, num: 14}, its power of p - 1 is: FieldElement{order: 19, num: 1}
for element: FieldElement{order: 19, num: 15}, its power of p - 1 is: FieldElement{order: 19, num: 1}
for element: FieldElement{order: 19, num: 16}, its power of p - 1 is: FieldElement{order: 19, num: 1}
for element: FieldElement{order: 19, num: 17}, its power of p - 1 is: FieldElement{order: 19, num: 1}
for element: FieldElement{order: 19, num: 18}, its power of p - 1 is: FieldElement{order: 19, num: 1}
-------------------------------
value of p is: 31
for element: FieldElement{order: 31, num: 1}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 2}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 3}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 4}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 5}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 6}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 7}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 8}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 9}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 10}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 11}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 12}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 13}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 14}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 15}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 16}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 17}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 18}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 19}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 20}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 21}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 22}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 23}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 24}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 25}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 26}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 27}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 28}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 29}, its power of p - 1 is: FieldElement{order: 31, num: 1}
for element: FieldElement{order: 31, num: 30}, its power of p - 1 is: FieldElement{order: 31, num: 1}
-------------------------------

你可以看到集合中的所有元素都是1,无论字段的顺序如何,这意味着对于任何有限字段中的任意元素k和顺序p,我们会有:
k ^(p-1) % p == 1
这是一个重要结论,我们将在后续视频中使用它来驱动我们的加密算法。

有限域元素上最难的操作是除法,我们有乘法操作,对于字段中的元素3和7(顺序为19),它们的乘积是(3 * 7) % 19 = 2。现在给定两个字段元素2和7,我们如何得到7?我们定义一个除法操作,它是乘法的逆运算,即2 / 7 = 3,这相当直观。这里我们需要确保分母不是0。

记住在有限的定义中,如果a在字段中,那么还有一个b在字段中,使得a * b = 1。对于3 7 = 2(注意表示模顺序的乘法),如果我们能找到b,使得b * 7 = 1,那么我们就会有3 * 7 * b = 2 * b => 3 * (7 * b) = 2 * b => 3 = 2 * b,这意味着2 / 7是2乘以b的结果,b. 也就是说,如果我们想做除法a / b,我们可以找到b的乘法逆元,称之为c,并使用c与模顺序相乘。

现在问题来了,我们如何找到b的乘法逆元?记住我们上面的问题吗?b ^ (p - 1) % p = 1 => b * b ^(p-2) % p = 1 => b的乘法逆元是b ^ (p-2)。

如果你不能确定为什么对于给定元素b在字段中且b^(p-1) % p = 1,我们有一个小代码片段来获得结果,我们需要使其数学上稳固,然后我们就有了它的证明,结论b^(p-1) % p = 1被称为费马小定理:

对于任何字段元素k(k!=0)和顺序p,我们有{1, 2, 3 …, p-1} <=> {k 1 % p, …, k (p-1) %p} =>
[1 2 3… (p-1)] % p == (k1) (k2) … (k* (p-1)) % p = k^(p-1) * [1 2 … p-1] % p,两边消去[12…p-1]我们得到1 % p == k ^(p-1) % p => 1 == k^(p-1)%p

现在让我们看看如何使用代码实现除法操作:


func (f *FieldElement) Multiply(other *FieldElement) *FieldElement {f.checkOrder(other)// 模顺序进行乘法var op big.Intmul := op.Mul(f.num, other.num)return NewFieldElement(f.order, op.Mod(mul, f.order))
}

因为b ^ (p - 1) % p = 1,所以当我们计算字段元素k的T次方时,我们可以优化为首先获取t = T % (p-1),然后计算k^(t) % p,这里是代码:


func (f *FieldElement) Power(power *big.Int) *FieldElement {/*k ^ (p-1) % p = 1,我们可以计算t = power % (p-1)然后k ^ power % p == k ^ t %p*/var op big.Intt := op.Mod(power, op.Sub(f.order, big.NewInt(int64(1))))powerRes := op.Exp(f.num, t, nil)modRes := op.Mod(powerRes, f.order)return NewFieldElement(f.order, modRes)
}

现在我们可以在main.go中检查我们的代码:


package mainimport (ecc "elliptic_curve""fmt""math/big""math/rand"
)func main() {f2 := ecc.NewFieldElement(big.NewInt(int64(19)), big.NewInt(int64(2)))f7 := ecc.NewFieldElement(big.NewInt(int64(19)), big.NewInt(int64(7)))fmt.Printf("field element 2 / 7 with order 19 is %v\n", f2.Divide(f7))f46 := ecc.NewFieldElement(big.NewInt(57), big.NewInt(46))fmt.Printf("field element 46 * 46 with order 57: %v\n", f46.Multiply(f46))fmt.Printf("field element 46 ^ (58) is %v\n", f46.Power(big.NewInt(int64(58))))
}

运行上述代码我们得到以下结果:

``go
复制代码
field element 2 / 7 with order 19 is FieldElement{order: 19, num: 3}
field element 46 * 46 with order 57: FieldElement{order: 57, num: 7}
field element 46 ^ (58) is FieldElement{order: 57, num: 7}

    
这正是我们所期望的,这就是字段元素的实现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/59570.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

dns服务器配置

主服务器 1.挂载点 mount /dev/sr0 /mnt 2.防火墙关闭 systemctl stop firewalld setenforce 0 3.下载bind软件 dnf install bind -y 4.进行正向解析配置 vim /etc/named.conf options { listen-on port 53 { 192.168.92.128; }; directo…

GraphRAG本地部署使用及兼容千帆通义

文章目录 前言一、GraphRAG本地安装1.创建环境并安装2.准备demo数据3.初始化demo目录 二、GraphRAG兼容千帆通义等大模型1.安装 graphrag-more2.准备Demo数据3.初始化demo目录4.移动和修改 settings.yaml 文件 三、知识库构建与使用1.知识库构建2.执行查询 前言 GraphRAG是一种…

揭秘2024年最火的5个科技趋势,你准备好迎接了吗?

在这个信息化飞速发展的时代&#xff0c;科技正以前所未有的速度改变着我们的生活。2024年&#xff0c;科技行业将迎来哪些新的突破与趋势&#xff1f;从人工智能到量子计算&#xff0c;从数字货币到智能家居&#xff0c;未来已来&#xff0c;而我们正站在一个巨变的风口浪尖上…

MySQL排序查询

排序查询 在实际应用中,经常都需要按照某个字段都某种排序都结果,实现语法&#xff1a; select 查询列表 from 表 where 条件 order by 排序字段列表 asc | desc; 案例&#xff1a;查询所有员工信息,要求工资从大到小排列 select * from employees order by salary desc; /…

Python实例:爱心代码

前言 在编程的奇妙世界里,代码不仅仅是冰冷的指令集合,它还可以成为表达情感、传递温暖的独特方式。今天,我们将一同探索用 Python 语言绘制爱心的神奇之旅。 爱心,这个象征着爱与温暖的符号,一直以来都在人类的情感世界中占据着特殊的地位。而通过 Python 的强大功能,…

JS JavaScript实现h5页面间跳转

一、不在JS中跳转 如果你不想在 JavaScript 中写页面跳转&#xff0c;而是希望使用 HTML 或者其它前端方式来实现页面跳转&#xff0c;下面是一些常见的方法&#xff1a; 1. 使用 <a> 标签进行跳转 HTML 中最常见的跳转方式就是使用 <a> 标签。它可以让用户点击链…

scala学习记录,Set,Map

set&#xff1a;集合&#xff0c;表示没有重复元素的集合&#xff0c;特点&#xff1a;唯一 语法格式&#xff1a;val 变量名 Set [类型]&#xff08;元素1&#xff0c;元素2...&#xff09; 可变不可变 可变&#xff08;mutable&#xff09;可对元素进行添加&#xff0c;删…

基于SpringBoot的免税商品优选购物商城的设计与实现

一、项目背景 从古至今&#xff0c;通过书本获取知识信息的方式完全被互联网络信息化&#xff0c;但是免税商品优选购物商城&#xff0c;对于购物商城工作来说&#xff0c;仍然是一项非常重要的工作。尤其是免税商品优选购物商城&#xff0c;传统人工记录模式已不符合当前社会…

【深度学习】DreamClear:提升图片分辨率的模型

基于PixArt-XL-2模型,效果很好。 DreamClear:高容量真实世界图像修复与隐私安全数据集构建 在图像修复领域,处理真实世界中的低质量(Low-Quality, LQ)图像并恢复其高质量(High-Quality, HQ)版本一直是一个具有挑战性的任务。今天,我们将介绍一个最新的开源项目——Dr…

从零开始的c++之旅——多态

1. 多态的概念 通俗来说就是多种形态。 多态分为编译时多态&#xff08;静态多态&#xff09;和运行时多态&#xff08;动态多态&#xff09;。 编译时多态主要就是我们之前提过的函数重载和函数模板&#xff0c;同名提高传不同的参数就可以调 用不同的函数&#xff0c…

js实现blob类型转化为excel文件

需求 后端通过接口将excel文件通过blob类型数据进行返回&#xff0c;前端接收数据并将其转化为excel文件进行下载 实现 接口方法 responseType&#xff1a;值为blob&#xff0c;标记返回数据类型为blob Content-Type&#xff1a;请求头设置&#xff0c;值为application/vnd…

融云「北极星」专业版:指标异常及时告警,趋势变化预先知悉

说起程序员的痛苦时刻&#xff0c;深夜接到告警电话、短信绝对榜上有名&#xff0c;甚至可能留下“铃声 PTSD”。 这也从另一个侧面提醒我们&#xff0c;所有在前台给用户丝滑体验的互联网产品&#xff0c;背后都有庞杂的系统和大量的工程师在支撑。而这其中&#xff0c;监控平…

安全篇(1)判断安全固件

判断安全固件的方法 一、通过串口开机打印 改方法适用Android与Tina 1.开机打印为SBOOT为安全 [289]HELLO! SBOOT is starting! 2.开机打印boot0为非安全 [88]BOOT0 commit : 1cbb5ea8b3 二、通过读数据 1.getprop | grep verifiedbootstate 这条命令的输出表示设备的…

火山引擎VeDI数据服务平台:在电商场景中,如何解决API编排问题?

01 平台介绍 数据服务平台可以在保证服务高可靠性和高安全性的同时&#xff0c;为各业务线搭建数据服务统一出口&#xff0c;促进数据共享&#xff0c;为数据和应用之间建立了一座“沟通桥梁”。 同时&#xff0c;解决数据理解困难、异构、重复建设、审计运维困难等问题&#x…

在Ubuntu 上实现 JAR 包的自启动

在 Ubuntu 上实现 JAR 包的自启动&#xff0c;可以通过以下几种方法&#xff1a; 方法一&#xff1a;使用 systemd 创建一个服务文件&#xff1a; 在 /etc/systemd/system/ 目录下创建一个新的服务文件&#xff0c;例如 myapp.service&#xff1a; sudo nano /etc/systemd/sys…

Object 内部类 异常

Objbect类 java提供了Object,它是所有类的父类,每个类都直接或间接的继承了Object类,因此Object类通常被称为超类 当定义一个类时,如果没有使用extends关键字直接去指定父类继承,只要没有被继承的类,都是会默认的去继承Object类,超类中定义了一些方法 方法名称方法说明boole…

SQLite -- 一个遵守君子协定的数据库

用惯了Oracle、PostgreSQL等数据库&#xff0c;今天接触到SQLite&#xff0c;简单尝试了下使用&#xff0c;顿感震惊&#xff01;&#xff01;&#xff01; 与传统的关系型数据库&#xff08;如 MySQL、PostgreSQL 等&#xff09;相比&#xff0c;它的约束是真的宽松。具体来说…

Linux 高级IO

学习任务&#xff1a; 高级 I/O&#xff1a;select、poll、epoll、mmap、munmap 要求&#xff1a; 学习高级 I/O 的用法&#xff0c;并实操 1、高级 I/O&#xff1a; 前置知识&#xff1a; 阻塞、I/O 多路复用 PS: 非阻塞 I/O ------ 非阻塞 I/O 阻塞其实就是进入了休眠状态&am…

JAVA WEB — HTML CSS 入门学习

本文为JAVAWEB 关于HTML 的基础学习 一 概述 HTML 超文本标记语言 超文本 超越文本的限制 比普通文本更强大 除了文字信息 还可以存储图片 音频 视频等标记语言 由标签构成的语言HTML标签都是预定义的 HTML直接在浏览器中运行 在浏览器解析 CSS 是一种用来表现HTML或XML等文…

ASRPRO 日历2

为避免与天问的ID冲突 ID前加10000 为使识别更顺畅 将 日期-月份 12月21日 合并 ;时间 10点25分 合并 通过串口获取日期 为使用常用词 计倒时 下周 明天,需通过串口获取当前日期 + 命令词 增加 我的 A的 B的 关系词 与任务 生日 买菜 增加 可自定义 任务 执行程序 双进…