文心一言 VS 讯飞星火 VS chatgpt (383)-- 算法导论24.5 3题

三、对引理 24.10 的证明进行改善,使其可以处理最短路径权重为 ∞ ∞ − ∞ -∞ 的情况。引理 24.10(三角不等式)的内容是:设 G = ( V , E ) G=(V,E) G=(V,E) 为一个带权重的有向图,其权重函数由 w : E → R w:E→R w:ER 给出,其源结点为 s s s 。那么对于所有的边 ( u , v ) ∈ E (u,v)∈E (u,v)E ,我们有 δ ( s , u ) ⩽ δ ( s , u ) + w ( u , v ) δ(s,u)⩽δ(s,u)+ w(u,v) δ(s,u)δ(s,u)+w(u,v) 。如果要写代码,请用go语言。

文心一言:

为了处理最短路径权重为 ∞ ∞ − ∞ -∞ 的情况,我们需要对三角不等式引理 24.10 的证明进行一定的调整。在这种情况下,我们需要特别注意权重的边界情况,即当路径不存在时,其权重应视为 ∞ ∞ ,而当路径权重为 − ∞ -∞ 时,也需要进行适当的处理。

下面是改进后的引理 24.10 的证明,以及使用 Go 语言实现的代码示例。

改进后的引理 24.10 证明

G = ( V , E ) G=(V,E) G=(V,E) 为一个带权重的有向图,其权重函数由 w : E → R w:E→R w:ER 给出,其源结点为 s s s。我们需要证明对于所有的边 ( u , v ) ∈ E (u,v)∈E (u,v)E,有:

δ ( s , v ) ⩽ δ ( s , u ) + w ( u , v ) δ(s,v) \leqslant δ(s,u) + w(u,v) δ(s,v)δ(s,u)+w(u,v)

其中 δ ( s , u ) δ(s,u) δ(s,u) 表示从源结点 s s s 到结点 u u u 的最短路径权重。如果路径不存在,则 δ ( s , u ) = ∞ δ(s,u) = ∞ δ(s,u)=

证明

  1. 基础情况:如果 δ ( s , u ) = ∞ δ(s,u) = ∞ δ(s,u)=,则 δ ( s , u ) + w ( u , v ) = ∞ δ(s,u) + w(u,v) = ∞ δ(s,u)+w(u,v)=,因为 w ( u , v ) w(u,v) w(u,v) 是有限的(可以是任意实数,包括 ∞ ∞ − ∞ -∞ ,但在此上下文中,边的权重通常是有限的)。由于 δ ( s , v ) δ(s,v) δ(s,v) 最多为 ∞ ∞ (如果路径不存在),因此不等式 δ ( s , v ) ⩽ δ ( s , u ) + w ( u , v ) δ(s,v) \leqslant δ(s,u) + w(u,v) δ(s,v)δ(s,u)+w(u,v) 成立。

  2. 一般情况:假设 δ ( s , u ) δ(s,u) δ(s,u) 是有限的,即存在从 s s s u u u 的路径。那么 δ ( s , v ) δ(s,v) δ(s,v) 要么是从 s s s v v v 的直接路径(通过边 ( u , v ) (u,v) (u,v)),要么是通过其他路径到达 v v v

    • 如果 δ ( s , v ) δ(s,v) δ(s,v) 是通过边 ( u , v ) (u,v) (u,v) 到达的,则 δ ( s , v ) = δ ( s , u ) + w ( u , v ) δ(s,v) = δ(s,u) + w(u,v) δ(s,v)=δ(s,u)+w(u,v),不等式显然成立。
    • 如果 δ ( s , v ) δ(s,v) δ(s,v) 不是通过边 ( u , v ) (u,v) (u,v) 到达的,则 δ ( s , v ) δ(s,v) δ(s,v) 必然小于或等于任何从 s s s v v v 的其他路径的权重,包括通过 u u u 再到 v v v 的路径(即 δ ( s , u ) + w ( u , v ) δ(s,u) + w(u,v) δ(s,u)+w(u,v))。因此, δ ( s , v ) ⩽ δ ( s , u ) + w ( u , v ) δ(s,v) \leqslant δ(s,u) + w(u,v) δ(s,v)δ(s,u)+w(u,v)
  3. 特殊情况:如果 w ( u , v ) = − ∞ w(u,v) = -∞ w(u,v)=,则 δ ( s , u ) + w ( u , v ) δ(s,u) + w(u,v) δ(s,u)+w(u,v) 可能为 − ∞ -∞ 。在这种情况下,如果 δ ( s , v ) δ(s,v) δ(s,v) 不是 − ∞ -∞ ,则必然存在一条从 s s s v v v 的路径,其权重是有限的(不是 − ∞ -∞ )。然而,由于我们可以总是选择通过 u u u ( u , v ) (u,v) (u,v) 到达 v v v 来获得权重 − ∞ -∞ (如果 δ ( s , u ) δ(s,u) δ(s,u) 不是 ∞ ∞ ),因此 δ ( s , v ) δ(s,v) δ(s,v) 实际上应该是 − ∞ -∞ ,使得不等式仍然成立。

Go 语言实现

以下是使用 Go 语言实现上述逻辑的示例代码:

package mainimport ("fmt""math"
)// 定义图的边
type Edge struct {From, To intWeight   float64
}// 计算最短路径权重的函数(使用 Floyd-Warshall 算法作为示例)
func shortestPaths(graph [][]Edge, numVertices int) [][]float64 {// 初始化距离矩阵dist := make([][]float64, numVertices)for i := range dist {dist[i] = make([]float64, numVertices)for j := range dist[i] {if i == j {dist[i][j] = 0} else {dist[i][j] = math.Inf(1) // 初始化为正无穷大}}}// 设置边的权重for _, vertex := range graph {for _, edge := range vertex {dist[edge.From][edge.To] = edge.Weight}}// Floyd-Warshall 算法for k := 0; k < numVertices; k++ {for i := 0; i < numVertices; i++ {for j := 0; j < numVertices; j++ {if dist[i][k] != math.Inf(1) && dist[k][j] != math.Inf(1) && dist[i][k]+dist[k][j] < dist[i][j] {dist[i][j] = dist[i][k] + dist[k][j]}}}}return dist
}// 检查三角不等式
func checkTriangleInequality(graph [][]Edge, source int, numVertices int) {dist := shortestPaths(graph, numVertices)for _, vertex := range graph {for _, edge := range vertex {u, v := edge.From, edge.Tow := edge.WeightdeltaSU := dist[source][u]deltaSV := dist[source][v]fmt.Printf("Checking (%d, %d) with weight %f: δ(s,u) = %f, δ(s,v) = %f\n", u, v, w, deltaSU, deltaSV)if !(deltaSV <= deltaSU+w) {fmt.Printf("Triangle inequality violated for (%d, %d)!\n", u, v)} else {fmt.Println("Triangle inequality holds.")}}}
}func main() {// 示例图(邻接表表示)graph := [][]Edge{{{0, 1, 1.0}, {0, 2, 4.0}},{{1, 2, 2.0}, {1, 3, -math.Inf(1)}}, // 包含 -∞ 的边{{2, 3, 5.0}},{},}source := 0numVertices := len(graph)checkTriangleInequality(graph, source, numVertices)
}

在这个示例中,我们使用了 Floyd-Warshall 算法来计算最短路径权重,并检查三角不等式是否成立。注意,这个实现假设了边的权重可以是任意实数,包括 ∞ ∞ − ∞ -∞ 。在实际应用中,你可能需要根据具体情况对算法进行调整,以处理特定的图结构和权重约束。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

讯飞星火:

为了处理最短路径权重为 ∞ ∞ − ∞ -∞ 的情况,我们需要对引理 24.10 进行一些修改。在带权重的有向图中,如果存在一条边的权重为 ∞ ∞ − ∞ -∞ ,那么这条边的存在可能会影响最短路径的计算。

以下是改进后的引理 24.10 以及相应的 Go 语言代码实现:

改进后的引理 24.10

G = ( V , E ) G=(V,E) G=(V,E) 为一个带权重的有向图,其权重函数由 w : E → R w:E→R w:ER 给出,其源结点为 s s s。对于所有的边 ( u , v ) ∈ E (u,v)∈E (u,v)E,我们有:
δ ( s , u ) + w ( u , v ) ≤ δ ( s , v ) δ(s,u) + w(u,v) \leq δ(s,v) δ(s,u)+w(u,v)δ(s,v)
其中, δ ( s , u ) δ(s,u) δ(s,u) 表示从源结点 s s s 到结点 u u u 的最短路径权重。

Go 语言代码实现

package mainimport ("fmt""math"
)// Edge represents a directed edge with a weight
type Edge struct {from   intto     intweight float64
}// Graph represents a directed graph with weights
type Graph struct {vertices intedges    []Edge
}// BellmanFord implements the Bellman-Ford algorithm to find shortest paths from source vertex
func BellmanFord(graph *Graph, source int) ([]float64, error) {distance := make([]float64, graph.vertices)for i := range distance {distance[i] = math.Inf(1) // Initialize distances to infinity}distance[source] = 0 // Distance to the source is zero// Relax edges repeatedlyfor i := 0; i < graph.vertices-1; i++ {for _, edge := range graph.edges {if distance[edge.from] != math.Inf(1) && distance[edge.from]+edge.weight < distance[edge.to] {distance[edge.to] = distance[edge.from] + edge.weight}}}// Check for negative-weight cyclesfor _, edge := range graph.edges {if distance[edge.from] != math.Inf(1) && distance[edge.from]+edge.weight < distance[edge.to] {return nil, fmt.Errorf("graph contains a negative-weight cycle")}}return distance, nil
}func main() {// Example usage of Bellman-Ford algorithmgraph := &Graph{vertices: 5,edges: []Edge{{from: 0, to: 1, weight: 6},{from: 0, to: 2, weight: 7},{from: 1, to: 2, weight: 8},{from: 1, to: 3, weight: 5},{from: 1, to: 4, weight: -4},{from: 2, to: 3, weight: -3},{from: 2, to: 4, weight: 9},{from: 3, to: 1, weight: -2},{from: 4, to: 0, weight: 2},{from: 4, to: 3, weight: 7},},}source := 0distances, err := BellmanFord(graph, source)if err != nil {fmt.Println("Error:", err)} else {fmt.Println("Shortest path distances from source:", distances)}
}

解释

  1. Graph Representation: 我们使用 Edge 结构体来表示有向边及其权重,并使用 Graph 结构体来表示整个图。
  2. Bellman-Ford Algorithm: 我们实现了 Bellman-Ford 算法来计算从源节点到所有其他节点的最短路径。该算法可以处理负权重边,并且能够检测负权重循环。
  3. Initialization: 初始化所有距离为无穷大(math.Inf(1)),并将源节点的距离设置为0。
  4. Relaxation: 重复松弛所有边,更新最短路径估计值。
  5. Negative-Weight Cycle Check: 最后一步检查是否存在负权重循环。如果存在,则返回错误。

通过这种方式,我们可以处理最短路径权重为 ∞ ∞ − ∞ -∞ 的情况,并确保算法的正确性和鲁棒性。

360智脑:

为了改进引理 24.10 的证明,使其能够处理最短路径权重为 ( \infty ) 和 ( -\infty ) 的情况,我们需要仔细考虑这些特殊情况下的行为。具体来说,我们需要确保在这些情况下,三角不等式仍然成立。

改进后的引理 24.10

引理 24.10 (改进的三角不等式):
设 ( G = (V, E) ) 为一个带权重的有向图,其权重函数由 ( w: E \to \mathbb{R} \cup {\infty, -\infty} ) 给出,其源结点为 ( s )。那么对于所有的边 ( (u, v) \in E ),我们有:
[ \delta(s, u) \leq \delta(s, v) + w(u, v) ]

其中,( \delta(s, u) ) 表示从源结点 ( s ) 到结点 ( u ) 的最短路径权重。

证明

  1. 基本情况:

    • 如果 ( \delta(s, u) = \infty ),则不等式 ( \delta(s, u) \leq \delta(s, v) + w(u, v) ) 自然成立,因为任何数加上有限值或无穷大都不会小于无穷大。
    • 如果 ( \delta(s, u) = -\infty ),则不等式 ( \delta(s, u) \leq \delta(s, v) + w(u, v) ) 也自然成立,因为负无穷大加上任何数仍然是负无穷大。
  2. 一般情况:

    • 假设 ( \delta(s, u) ) 是有限值。
    • 根据最短路径的定义,从 ( s ) 到 ( u ) 的最短路径权重 ( \delta(s, u) ) 不会大于从 ( s ) 到 ( v ) 的最短路径权重加上从 ( u ) 到 ( v ) 的边权重 ( w(u, v) )。
    • 因此,我们有:
      [ \delta(s, u) \leq \delta(s, v) + w(u, v) ]

Go 语言实现

以下是用 Go 语言实现的代码,用于验证改进后的三角不等式:

package mainimport ("fmt""math"
)// Weight represents the weight of an edge, which can be finite or infinite.
type Weight float64const (Infinity  Weight = math.Inf(1)NegativeInfinity Weight = math.Inf(-1)
)// ShortestPathWeight represents the shortest path weight from source to a vertex.
type ShortestPathWeight map[string]Weight// Graph represents a weighted directed graph.
type Graph struct {Vertices    []stringEdges       map[string]map[string]WeightSource      stringShortestPaths ShortestPathWeight
}// NewGraph creates a new graph with given vertices and edges.
func NewGraph(vertices []string, edges map[string]map[string]Weight, source string) *Graph {return &Graph{Vertices:    vertices,Edges:       edges,Source:      source,ShortestPaths: make(ShortestPathWeight),}
}// InitializeShortestPaths initializes the shortest path weights from the source.
func (g *Graph) InitializeShortestPaths() {for _, v := range g.Vertices {if v == g.Source {g.ShortestPaths[v] = 0} else {g.ShortestPaths[v] = Infinity}}
}// Relax relaxes the edge (u, v) if a shorter path is found.
func (g *Graph) Relax(u, v string, weight Weight) {if g.ShortestPaths[u] + weight < g.ShortestPaths[v] {g.ShortestPaths[v] = g.ShortestPaths[u] + weight}
}// VerifyTriangleInequality verifies the triangle inequality for all edges.
func (g *Graph) VerifyTriangleInequality() bool {for u, neighbors := range g.Edges {for v, weight := range neighbors {if g.ShortestPaths[u] != NegativeInfinity && g.ShortestPaths[v] != Infinity {if g.ShortestPaths[u] > g.ShortestPaths[v]+weight {return false}}}}return true
}func main() {vertices := []string{"s", "u", "v"}edges := map[string]map[string]Weight{"s": {"u": 10},"u": {"v": 5},"v": {},}source := "s"graph := NewGraph(vertices, edges, source)graph.InitializeShortestPaths()// Relax edges to find shortest pathsgraph.Relax("s", "u", 10)graph.Relax("u", "v", 5)fmt.Println("Shortest Paths:", graph.ShortestPaths)fmt.Println("Triangle Inequality Verified:", graph.VerifyTriangleInequality())
}

解释

  1. Weight 类型: 定义了一个 Weight 类型,它可以表示有限值、正无穷大和负无穷大。
  2. Graph 结构体: 表示一个带权重的有向图,包含顶点、边、源结点和最短路径权重。
  3. InitializeShortestPaths 方法: 初始化从源结点到所有顶点的最短路径权重。
  4. Relax 方法: 松弛边,更新最短路径权重。
  5. VerifyTriangleInequality 方法: 验证所有边是否满足改进后的三角不等式。
  6. main 函数: 创建图并初始化最短路径权重,松弛边,验证三角不等式。

通过这种方式,我们可以确保在处理最短路径权重为 ( \infty ) 和 ( -\infty ) 的情况下,三角不等式仍然成立。

智谱清言:

在处理最短路径权重为 ∞ ∞ − ∞ -∞ 的情况时,我们需要首先明确几个前提:
如果源结点 s s s 到任何结点 u u u 的最短路径权重 δ ( s , u ) δ(s,u) δ(s,u) ∞ ∞ ,那么这意味着在图中不存在从 s s s u u u 的路径。
在大多数图算法中,权重 − ∞ -∞ 不是一个有效的权重,因为它会导致算法的不确定性。通常,我们假设权重函数 w w w 的值域是实数集中的有限值。
然而,如果我们必须处理 ∞ ∞ − ∞ -∞ 的情况,我们可以对引理 24.10 的证明进行以下修改:
δ ( s , u ) = ∞ δ(s,u) = ∞ δ(s,u)= 时,不等式 δ ( s , u ) ⩽ δ ( s , u ) + w ( u , v ) δ(s,u)⩽δ(s,u)+ w(u,v) δ(s,u)δ(s,u)+w(u,v) 自然成立,因为 ∞ ∞ 加上任何数仍然是 ∞ ∞
δ ( s , u ) = − ∞ δ(s,u) = -∞ δ(s,u)= 时,不等式可能不成立,因为 − ∞ -∞ 加上一个正数会变成一个小于 − ∞ -∞ 的数。然而,通常我们不会在图中使用 − ∞ -∞ 作为权重,因此这种情况在现实中不太可能出现。
以下是使用 Go 语言编写的代码示例,它考虑了 ∞ ∞ 的情况:

package main
import ("fmt""math"
)
// Edge represents a directed edge with a weight.
type Edge struct {from   stringto     stringweight float64
}
// Graph represents a weighted directed graph.
type Graph struct {edges map[string][]Edge
}
// NewGraph creates a new Graph.
func NewGraph() *Graph {return &Graph{edges: make(map[string][]Edge),}
}
// AddEdge adds a new edge to the graph.
func (g *Graph) AddEdge(from, to string, weight float64) {g.edges[from] = append(g.edges[from], Edge{from: from, to: to, weight: weight})
}
// ShortestPath calculates the shortest path from source to target.
func (g *Graph) ShortestPath(source, target string) float64 {dist := make(map[string]float64)for node := range g.edges {dist[node] = math.Inf(1) // Initialize distances with infinity}dist[source] = 0 // Distance to the source is 0// Relax edges repeatedlyfor {updated := falsefor _, edges := range g.edges {for _, edge := range edges {if dist[edge.from] != math.Inf(1) && dist[edge.from]+edge.weight < dist[edge.to] {dist[edge.to] = dist[edge.from] + edge.weightupdated = true}}}if !updated {break}}return dist[target]
}
func main() {g := NewGraph()g.AddEdge("s", "u", 1)g.AddEdge("u", "v", 2)g.AddEdge("s", "v", 4) // This edge should not be used in the shortest path from s to v// Check the triangle inequalitydistSU := g.ShortestPath("s", "u")distUV := g.ShortestPath("u", "v")distSV := g.ShortestPath("s", "v")// Check if the triangle inequality holds, considering infinityif distSV <= distSU+distUV || math.IsInf(distSU, 1) || math.IsInf(distUV, 1) {fmt.Println("Triangle inequality holds.")} else {fmt.Println("Triangle inequality does not hold.")}
}

在上述代码中,我们首先初始化所有结点的最短路径为 ∞ ∞ ,然后通过重复放松边来计算最短路径。在检查三角不等式时,我们考虑了 ∞ ∞ 的情况。如果 δ ( s , u ) δ(s,u) δ(s,u) δ ( u , v ) δ(u,v) δ(u,v) ∞ ∞ ,则不等式自然成立。如果都不是 ∞ ∞ ,我们再比较它们的大小。

天工:

  1. 分析问题
    • 首先,原引理中的三角不等式在常规情况下成立。当要处理最短路径权重为(∞)和(-∞)的情况时,需要重新审视不等式中的各项含义。
    • 对于(∞)的情况,如果(\delta(s, u)=\infty),那么(\delta(s, u)+w(u, v)=\infty)(当(w(u, v))为有限值时),不等式依然成立。如果(w(u, v)=\infty),也需要相应处理。
    • 对于(-∞)的情况,当(\delta(s, u)=-\infty)或者(w(u, v)=-\infty)时,不等式的形式需要特殊处理,因为涉及到负无穷的加法运算。
  2. 改善证明思路(不涉及代码)
    • 当(\delta(s, u)=\infty)时:
      • 如果(w(u, v))是有限值,那么(\delta(s, u)+w(u, v)=\infty),显然(\delta(s, u)\leqslant\delta(s, u)+w(u, v))成立。
      • 如果(w(u, v)=\infty),同样(\delta(s, u)\leqslant\delta(s, u)+w(u, v))成立。
    • 当(\delta(s, u)=-\infty)时:
      • 如果(w(u, v))是有限值,(\delta(s, u)+w(u, v)=-\infty),不等式(\delta(s, u)\leqslant\delta(s, u)+w(u, v))成立(两边都是(-\infty))。
      • 如果(w(u, v)=-\infty),根据最短路径的定义和三角不等式的含义,在有向图的路径权重定义下,需要重新定义这种情况下不等式的意义,可能需要从图的结构和路径可达性角度去解释不等式依然成立(例如,从源点(s)到(u)的最短路径权重已经是负无穷,再加上到(v)的边权重,整体路径权重仍然是负无穷或者更负,不等式在这种广义的路径权重概念下成立)。
    • 当(\delta(s, u))为有限值时:
      • 如果(w(u, v))是有限值,原证明方法基本适用,只是需要明确在处理(∞)和(-∞)情况的框架下,这种常规情况的位置。
      • 如果(w(u, v)=\infty),则(\delta(s, u)+w(u, v)=\infty),(\delta(s, u)\leqslant\delta(s, u)+w(u, v))成立。
      • 如果(w(u, v)=-\infty),类似前面(\delta(s, u)=-\infty)的情况去处理,从路径权重的广义概念和图结构角度确保不等式成立。
  3. Go语言代码示例(假设图的结构已经定义,并且有计算(\delta)函数等相关函数)
package main// 假设这里有图的结构体定义以及相关的函数来获取边的权重和计算delta等// 这里只是一个伪代码框架,实际需要根据完整的图结构定义来完善
func checkTriangleInequality(s int, u int, v int, graph Graph) bool {delta_su := calculateDelta(s, u, graph)weight_uv := getWeight(u, v, graph)if delta_su == float64(+1<<63 - 1) {// 处理delta(s,u)为正无穷的情况if weight_uv == float64(+1<<63 - 1) {return true}return true} else if delta_su == float64(-1<<63) {// 处理delta(s,u)为负无穷的情况if weight_uv == float64(-1<<63) {// 根据前面的分析处理这种情况return true}return true} else {// 常规情况delta_sv := calculateDelta(s, v, graph)if delta_su <= delta_su+weight_uv {return true}return false}
}

请注意,上述代码中的Graph类型、calculateDelta函数和getWeight函数需要根据实际的图结构定义来实现。这个代码只是为了展示在处理(∞)和(-∞)情况时的大致框架。

chatgpt:

引理 24.10 的三角不等式可以表述为:在一个带权重的有向图中,源节点 ( s ) 到节点 ( u ) 的最短路径权重应当小于或等于从 ( s ) 到 ( u )、再加上从 ( u ) 到 ( v ) 的边的权重。这一定理本质上依赖于路径的加法性质,并且对于所有的节点及其之间的边有效。

要考虑最短路径权重为 ( \infty ) 和 ( -\infty ) 的情况,我们需要首先确定这些权重的意义:

  1. 最短路径权重为 ( \infty ):表示从源节点 ( s ) 到节点 ( u ) 不可达,因此 ( \delta(s, u) = \infty )。在这种情况下,任何加法 ( \delta(s, u) + w(u, v) ) 的结果也会是 ( \infty ),因此不等式仍然成立,因为
    [
    \infty \leq \infty
    ]
    并且如果 ( \delta(s, u) = \infty ) 且 ( w(u, v) ) 是有限值,那么结果为 ( \infty ) 不等于真实路径的情况是讨论的一种边界情况。

  2. 最短路径权重为 ( -\infty ):表示存在路径可达性问题,通常会出现在有负权重环的情况下。这种情况下,我们常常会令最短路径标志为 ( -\infty ) 意味着在某个点之后开始无限缩小路径的权重,因此,对于所有延展的路径,构造出不等式的方式需要小心。

因此,在处理这些情况时,对引理 24.10 的表达和证明可以考虑如下逻辑:

改进的引理证明

对于每一条边 ( (u, v) \in E ),我们考虑以下几种情况:

  1. 假设 ( \delta(s, u) = \infty ):

    • 由于 ( \delta(s, u) ) 是不可达的,那么对于任何值 ( w(u, v) ),
      [
      \delta(s, u) + w(u, v) = \infty + w(u, v) = \infty
      ]
      不等式自然成立。
  2. 假设 ( \delta(s, u) = -\infty ):

    • 由于这里实际上意味着到达的路径存在负环,可形成无穷下降,因此所有后续添加 ( w(u, v) ) 的边也将导致总体路径权重趋近于负无穷,保持不等式成立。
  3. 假设 ( \delta(s, u) ) 和 ( w(u, v) ) 是有限值:

    • 传统的三角不等式依旧成立:
      [
      \delta(s, u) + w(u, v) \text{ 结果也将是凡是 } \delta(s, v) \text{ 的可达性无影响}
      ]

这种讨论确保了不等式在所有情况下均成立。

Go 语言实现

以下是简单的 Go 实现,可以帮助判断并在图中采用三角不等式进行更新:

package mainimport ("fmt""math"
)const inf = math.Inf(1)  // 定义正无穷
const negInf = math.Inf(-1) // 定义负无穷// Graph 存储图的结构
type Graph struct {vertices intedges    [][]float64
}// NewGraph 创建一个新图
func NewGraph(v int) *Graph {g := &Graph{vertices: v}g.edges = make([][]float64, v)for i := range g.edges {g.edges[i] = make([]float64, v)for j := range g.edges[i] {g.edges[i][j] = inf // 初始化为无穷大}}return g
}// AddEdge 添加边到图
func (g *Graph) AddEdge(u, v int, weight float64) {g.edges[u][v] = weight
}// FloydWarshall 实现 Floyd-Warshall 算法
func (g *Graph) FloydWarshall() [][]float64 {dist := make([][]float64, g.vertices)for i := range dist {dist[i] = make([]float64, g.vertices)copy(dist[i], g.edges[i])}for k := 0; k < g.vertices; k++ {for i := 0; i < g.vertices; i++ {for j := 0; j < g.vertices; j++ {if dist[i][k] != inf && dist[k][j] != inf {dist[i][j] = min(dist[i][j], dist[i][k]+dist[k][j])}}}}return dist
}// min 辅助函数,返回最小值
func min(a, b float64) float64 {if a < b {return a}return b
}func main() {g := NewGraph(4)g.AddEdge(0, 1, 3)g.AddEdge(1, 2, 4)g.AddEdge(2, 3, 2)g.AddEdge(0, 3, 10)g.AddEdge(3, 1, -6) // 负环边distances := g.FloydWarshall()for i := range distances {for j := range distances[i] {if distances[i][j] == inf {fmt.Print("∞ ")} else {fmt.Printf("%v ", distances[i][j])}}fmt.Println()}
}

说明

  • 图的创建与边的添加部分如上实现,通过 FloydWarshall 方法计算所有节点之间的最短路径,请注意可以增强打印自动识别达到 的情况。该方法可以进一步调整,以融入更复杂的边权处理逻辑。

kimi:

要证明引理 24.10(三角不等式)可以处理最短路径权重为 ( \infty ) 和 ( -\infty ) 的情况,我们需要考虑这些特殊情况对不等式的影响。

引理 24.10(三角不等式)的一般形式

设 ( G = (V, E) ) 为一个带权重的有向图,其权重函数由 ( w: E \to \mathbb{R} ) 给出,其源结点为 ( s )。那么对于所有的边 ( (u, v) \in E ),我们有:
[ \delta(s, u) \leq \delta(s, u) + w(u, v) ]

特殊情况下的考虑

  1. 最短路径权重为 ( \infty )

    • 如果 ( \delta(s, u) = \infty ),那么不等式 ( \delta(s, u) \leq \delta(s, u) + w(u, v) ) 总是成立,因为 ( \infty + w(u, v) = \infty ) 对于任何实数 ( w(u, v) ) 都成立。
  2. 最短路径权重为 ( -\infty )

    • 如果 ( \delta(s, u) = -\infty ),那么不等式 ( \delta(s, u) \leq \delta(s, u) + w(u, v) ) 总是成立,因为 ( -\infty \leq -\infty + w(u, v) ) 对于任何实数 ( w(u, v) ) 都成立。

证明的改善

为了处理这些特殊情况,我们可以将引理 24.10 重新表述为:
[ \delta(s, u) \leq \delta(s, u) + w(u, v) ]
其中 ( \delta(s, u) ) 可以是任何实数,包括 ( \infty ) 和 ( -\infty )。

Go 语言实现

在 Go 语言中,我们可以使用 math.Inf 来表示 ( \infty ) 和 ( -\infty )。以下是如何在 Go 中实现这个不等式的示例:

package mainimport ("fmt""math"
)// 定义最短路径权重类型
type PathWeight float64// 检查三角不等式是否成立
func checkTriangleInequality(deltaSU, wUV PathWeight) bool {return deltaSU <= deltaSU + wUV
}func main() {// 示例权重deltaSU := PathWeight(math.Inf(1)) // 表示无穷大wUV := PathWeight(5)// 检查不等式if checkTriangleInequality(deltaSU, wUV) {fmt.Println("三角不等式成立:", deltaSU, "<=", deltaSU+wUV)} else {fmt.Println("三角不等式不成立")}// 示例权重deltaSU = PathWeight(math.Inf(-1)) // 表示负无穷大wUV = PathWeight(5)// 检查不等式if checkTriangleInequality(deltaSU, wUV) {fmt.Println("三角不等式成立:", deltaSU, "<=", deltaSU+wUV)} else {fmt.Println("三角不等式不成立")}
}

这段代码展示了如何在 Go 语言中处理最短路径权重为 ( \infty ) 和 ( -\infty ) 的情况,并验证三角不等式是否成立。

混元:

为了处理最短路径权重为 ∞ ∞ − ∞ -∞ 的情况,我们需要对引理 24.10 的证明进行一些调整。具体来说,我们需要确保在计算最短路径时正确处理这些特殊情况。

以下是改进后的引理 24.10 的证明,并附带 Go 语言代码实现:

改进后的引理 24.10 证明

  1. 初始化

    • δ ( s , s ) = 0 δ(s,s) = 0 δ(s,s)=0
    • 对于所有 v ∈ V v ∈ V vV v ≠ s v ≠ s v=s,设 δ ( s , v ) = ∞ δ(s,v) = ∞ δ(s,v)=
    • 对于所有 v ∈ V v ∈ V vV,设 δ ( s , v ) = − ∞ δ(s,v) = -∞ δ(s,v)= 如果存在一条从 s s s v v v 的路径,其权重为负无穷。
  2. 三角不等式

    • 对于所有的边 ( u , v ) ∈ E (u,v) ∈ E (u,v)E,我们需要证明 δ ( s , u ) ≤ δ ( s , u ) + w ( u , v ) δ(s,u) ≤ δ(s,u) + w(u,v) δ(s,u)δ(s,u)+w(u,v)
  3. 处理特殊情况

    • 如果 δ ( s , u ) = ∞ δ(s,u) = ∞ δ(s,u)= w ( u , v ) = ∞ w(u,v) = ∞ w(u,v)=,则 δ ( s , u ) + w ( u , v ) = ∞ δ(s,u) + w(u,v) = ∞ δ(s,u)+w(u,v)=,显然 δ ( s , u ) ≤ ∞ δ(s,u) ≤ ∞ δ(s,u)
    • 如果 δ ( s , u ) = − ∞ δ(s,u) = -∞ δ(s,u)= w ( u , v ) = − ∞ w(u,v) = -∞ w(u,v)=,则 δ ( s , u ) + w ( u , v ) = − ∞ δ(s,u) + w(u,v) = -∞ δ(s,u)+w(u,v)=,显然 δ ( s , u ) ≤ − ∞ δ(s,u) ≤ -∞ δ(s,u)
    • 如果 δ ( s , u ) δ(s,u) δ(s,u) w ( u , v ) w(u,v) w(u,v) 都是有限值,则直接应用三角不等式 δ ( s , u ) ≤ δ ( s , u ) + w ( u , v ) δ(s,u) ≤ δ(s,u) + w(u,v) δ(s,u)δ(s,u)+w(u,v)

Go 语言代码实现

package mainimport ("fmt""math"
)const (inf  = math.Inf(1)negInf = math.Inf(-1)
)type Edge struct {to     intweight float64
}func shortestPath(graph [][]Edge, source int) []float64 {n := len(graph)dist := make([]float64, n)for i := range dist {if i == source {dist[i] = 0} else {dist[i] = inf}}for i := range graph {for _, edge := range graph[i] {if dist[i]+edge.weight < dist[edge.to] {dist[edge.to] = dist[i] + edge.weight}}}return dist
}func main() {graph := [][]Edge{{{to: 1, weight: 1}, {to: 2, weight: 4}},{{to: 2, weight: 2}, {to: 3, weight: 5}},{{to: 3, weight: 1}},{},}source := 0dist := shortestPath(graph, source)for i, d := range dist {if d == inf {fmt.Printf("Distance from %d to %d is ∞\n", source, i)} else if d == negInf {fmt.Printf("Distance from %d to %d is -∞\n", source, i)} else {fmt.Printf("Distance from %d to %d is %.2f\n", source, i, d)}}
}

解释

  1. 初始化

    • dist 数组初始化为 ∞ ∞ ,源节点的距离为 0 0 0
  2. 更新距离

    • 使用 Bellman-Ford 算法更新每个节点的最短路径距离。
    • 如果发现更短的路径,则更新距离。
  3. 处理特殊情况

    • 在输出结果时,检查距离是否为 ∞ ∞ − ∞ -∞ ,并相应地输出。

通过这种方式,我们可以确保引理 24.10 的证明能够处理最短路径权重为 ∞ ∞ − ∞ -∞ 的情况。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/59412.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度学习基础知识-损失函数

目录 1. 均方误差&#xff08;Mean Squared Error, MSE&#xff09; 2. 平均绝对误差&#xff08;Mean Absolute Error, MAE&#xff09; 3. Huber 损失 4. 交叉熵损失&#xff08;Cross-Entropy Loss&#xff09; 5. KL 散度&#xff08;Kullback-Leibler Divergence&…

2024 CSS保姆级教程二 - BFC详解

前言 - CSS中的文档流 在介绍BFC之前&#xff0c;需要先给大家介绍一下文档流。​ 我们常说的文档流其实分为定位流、浮动流、普通流三种。​ ​ 1. 绝对定位(Absolute positioning)​ 如果元素的属性 position 为 absolute 或 fixed&#xff0c;它就是一个绝对定位元素。​ 在…

指针(c语言)

一.指针的定义 1.内存被划分为一个一个内存单元&#xff0c;对内存单元进行编号&#xff0c;这些编号称为内存单元的地址&#xff0c; 其中指针就是存放地址的容器 2.平常说的指针&#xff0c;其实就是指针变量 注意&#xff1a; 1个内存单元的大小是1个字节&#xff0c;如果是…

动手学深度学习67 自注意力

1. 自注意力 k 窗口的大小 每个kernel窗口都可以并行计算&#xff0c;GPU计算 最长路径&#xff1a;信息是怎么传递的 filed–视野 自注意力适合处理比较长的文本&#xff0c;无视距离&#xff0c;可以看比较长的文本&#xff0c;但是计算复杂度高【代价】 位置信息加到输入数…

Hadoop-004-Big Data Tools插件的使用

一、Big Data Tools插件配置流程 1、安装Big Data Tools插件 以IntelliJ IDEA 2024.2.3为例打开setting, 搜索安装Big Data Tools插件后重启IDEA 2、Windows系统基础配置 Windows系统需要做一些基础设置&#xff0c;配合插件使用,将之前下载的hadoop-3.2.4.tar.gz 解压到D…

【VS+QT】联合开发踩坑记录

最新更新日期&#xff1a;2024/11/05 0. 写在前面 因为目前在做自动化产线集成软件开发相关的工作&#xff0c;需要用到QT&#xff0c;所以选择了VS联合开发&#xff0c;方便调试。学习QT的过程中也踩了很多坑&#xff0c;在此记录一下&#xff0c;提供给各位参考。 1. 环境配…

JS渗透(安全)

JS逆向 基本了解 作用域&#xff1a; 相关数据值 调用堆栈&#xff1a; 由下到上就是代码的执行顺序 常见分析调试流程&#xff1a; 1、代码全局搜索 2、文件流程断点 3、代码标签断点 4、XHR提交断点 某通js逆向结合burp插件jsEncrypter 申通快递会员中心-登录 查看登录包…

OJ03:删除有序数组中的重复项

目录 题目思路分析代码展示&#xff1a; 题目 —给你一个 非严格递增排列 的数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使每个元素 只出现一次 &#xff0c;返回删除后数组的新长度。元素的 相对顺序 应该保持 一致 。然后返回 nums 中唯一元素的个数。…

DistilQwen2:通义千问大模型的知识蒸馏实践

作者&#xff1a;岳元浩&#xff08;顾城&#xff09;、汪诚愚&#xff08;熊兮&#xff09;、严俊冰&#xff08;玖烛&#xff09;、黄俊&#xff08;临在&#xff09; 背景 在人工智能快速发展的今天&#xff0c;大语言模型已经成为了人工智能的研究热点。其中&#xff0c;…

程序员也要认识下“信创产业”

兄弟姐妹们&#xff0c;大家初入社会会觉得技术是第一位&#xff0c;我呸&#xff0c;其实你在那个领域敲代码的选择才是最重要的&#xff0c;选对了领域绝对比你背上100个面试题目强&#xff0c;今天带大家了解下信创产业。 信创产业&#xff0c;即信息技术应用创新产业&#…

Rust 力扣 - 1423. 可获得的最大点数

文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 题目所求结果存在下述等式 可获得的最大点数 所有卡牌的点数之和 - 长度为&#xff08;卡牌数量 - k&#xff09;的窗口的点数之和的最小值 我们遍历长度为&#xff08;卡牌数量 - k&#xff09;的窗口&#…

前端实现json动画(附带示例)

前端实现json动画&#xff08;附带示例&#xff09; 使用lottie制作动画。1.json动画2.实现效果3.git仓库4.运行5.json动画天堂6.代码7. 经常使用的方法 使用lottie制作动画。 1.json动画 废话不多说&#xff0c;直接看效果图2.实现效果 3.git仓库 https://gitee.com/chaiach…

[ vulnhub靶机通关篇 ] 渗透测试综合靶场 DarkHole:1 通关详解 (附靶机搭建教程)

&#x1f36c; 博主介绍 &#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 _PowerShell &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 &#x1f389;点赞➕评论➕收藏 养成习…

成都睿明智科技有限公司共赴抖音电商蓝海

在这个短视频风起云涌的时代&#xff0c;抖音作为现象级的社交媒体平台&#xff0c;不仅改变了人们的娱乐方式&#xff0c;更悄然间重塑了电商行业的格局。在这片充满机遇与挑战的蓝海中&#xff0c;成都睿明智科技有限公司凭借其敏锐的市场洞察力和专业的服务能力&#xff0c;…

Centos 网络接口打vlan标签

Centos 网络接口打vlan标签 本次使用给bond打vlan标签&#xff0c;其实其他普通接口也一样 Centos创建bond前需要关闭NetworkManager [root192 network-scripts]# systemctl disable NetworkManager --now Removed symlink /etc/systemd/system/multi-user.target.wants/Netwo…

ElMessageBox 内容自定义

1. ElmessageBox弹出框显示内容设置字体颜色&#xff1a; 代码内容&#xff1a; const saveToGroup (row: Customers) > {ElMessageBox.confirm(h("i",{ style: "color: #409EFF" },"未建档客户公司无法创建线索/商机/礼品申请。"),"…

pdmaner连接sqlexpress

别以为sqlserver默认的端口总是1433 案例 有台sqlserver2008 express服务器&#xff0c;刚安装&#xff0c;支持混合模式登录&#xff0c;其它什么配置也没改。 先看用ADO连接 这说明&#xff1a; 案例中sqlserver端口不是1433 &#xff01;&#xff01;&#xff01;ADO连接…

使用MongoDB Atlas构建无服务器数据库

&#x1f493; 博客主页&#xff1a;瑕疵的CSDN主页 &#x1f4dd; Gitee主页&#xff1a;瑕疵的gitee主页 ⏩ 文章专栏&#xff1a;《热点资讯》 使用MongoDB Atlas构建无服务器数据库 MongoDB Atlas 简介 注册账户 创建集群 配置网络 设置数据库用户 连接数据库 设计文档模式…

k8s 上如何跑 Dolphins 模型

接着上一篇的介绍&#xff0c;这一篇就来跑跑 Dolphins 模型&#xff0c;本篇会记录&#xff0c;跑模型常见的阬点。 1 在 k8s 上创建 pod 将外部数据挂载在 pod 里&#xff0c;并申请 gpu 资源。同时修改代码里对应的引入数据的路径 # dolphins.yaml apiVersion: v1 kind: …

MySQL数据表导入到clickhouse数据库中

前言&#xff1a;研发需求&#xff0c;需要把MySQL数据导入到clickhouse中来测试计算性能是否提升。 从MySQL导入到clickhouse需要两个工具 NavicatDBeaver 导出MySQL数据 连接上MySQL>选择数据库>选择数据表 选择csv格式 导出数据 下面全部默认即可 开始导出 …