【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型

一、介绍

车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。

二、系统效果图片展示

img_10_15_17_10_12

img_10_15_17_10_26

img_10_15_17_10_33

三、演示视频 and 完整代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/sem38n5ssorbg8g7

四、卷积神经网络算法介绍

卷积神经网络(Convolutional Neural Networks, CNNs)在图像识别领域具有显著的特点:

  1. 局部感知能力:通过卷积层,CNN能够捕捉图像的局部特征,如边缘和纹理信息,这使得它在处理图像时具有空间感知能力。

  2. 参数共享:卷积层中的权重在整个输入图像上共享,减少了模型的参数数量,降低了过拟合的风险,并提高了训练效率。

  3. 平移不变性:由于权重共享,CNN对输入图像中的平移具有不变性,即相同的特征在图像的不同位置出现时,网络能够识别出来。

  4. 层次化特征提取:CNN通过多层结构实现从简单到复杂的特征提取,底层可能识别边缘,而高层可能识别更复杂的形状或对象。

  5. 自动特征工程:传统的机器学习方法需要手动提取特征,而CNN能够自动学习数据中的特征,减少了预处理的工作量。

  6. 多任务学习能力:CNN不仅可以用于图像分类,还可以通过修改网络结构来执行其他任务,如目标检测和图像分割。

下面是一个简单的CNN代码示例,使用Python和TensorFlow框架:

import tensorflow as tf
from tensorflow.keras import layers, models# 定义模型
model = models.Sequential()
# 添加卷积层
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(layers.MaxPooling2D((2, 2)))
# 添加另一个卷积层
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
# 添加全连接层
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
# 添加输出层
model.add(layers.Dense(10, activation='softmax'))# 编译模型
model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['accuracy'])# 模型摘要
model.summary()

这段代码定义了一个简单的CNN模型,包含两个卷积层和池化层,随后是全连接层和输出层,适用于MNIST手写数字识别任务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/59330.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Redis】浅析Redis大Key

目录 1、什么是Redis大Key 2、大 Key 是怎么产生的 3、大 Key 导致的问题 4、如何快速找到 Redis 大 Key 5、大 Key 优化策略 6、总结 我们在使用 Redis 的过程中,如果未能及时发现并处理 Big keys(下文称为“大Key”),可能…

Rocky DEM tutorial3_Vibrating Screen_振荡筛

tutorial3_Vibrating Screen_振荡筛 文章目录 tutorial3_Vibrating Screen_振荡筛0. 目的1. 模型介绍2. 模型设置2.1 Physics设置2.2 导入几何2.3 创建一个进口的几何面2.4 定义运动 Motion frame2.5 材料设置,保持默认即可2.6 设置材料间的相互作用 materials inte…

小林渗透入门:burpsuite+proxifier抓取小程序流量

目录 前提: 代理: proxifier: 步骤: bp证书安装 bp设置代理端口: proxifier设置规则: proxifier应用规则: 结果: 前提: 在介绍这两个工具具体实现方法之前&#xff0…

阿里云-防火墙设置不当导致ssh无法连接

今天学网络编程的时候,看见有陌生ip连接,所以打开了防火墙禁止除本机之外的其他ip连接: 但是当我再次用ssh的时候,连不上了才发现大事不妙。 折腾了半天,发现阿里云上可以在线向服务器发送命令,所以赶紧把2…

深度学习基础(2024-11-02更新到图像尺寸变换 与 裁剪)

1. 名词解释 FFN FFN : Feedforward Neural Network,前馈神经网络馈神经网络是一种基本的神经网络架构,也称为多层感知器(Multilayer Perceptron,MLP)FFN 一般主要是包括多个全连接层(FC)的网络&#xff…

【初阶数据结构篇】链式结构二叉树(二叉链)的实现(感受递归暴力美学)

文章目录 须知 💬 欢迎讨论:如果你在学习过程中有任何问题或想法,欢迎在评论区留言,我们一起交流学习。你的支持是我继续创作的动力! 👍 点赞、收藏与分享:觉得这篇文章对你有帮助吗&#xff1…

2024年第六届全球校园人工智能算法精英大赛——【算法挑战赛】钢材表面缺陷检测与分割 比赛复盘

引言 钢材表面缺陷检测在钢铁生产中是确保质量的关键环节,传统的人工检测方式难以满足大 规模工业生产的需求。近年来,基于深度学习的缺陷检测方法因其高效性和准确性受到广泛关 注。然而,现有的深度学习模型如U-Net虽具备较好的分割性能&am…

【网络】自定义协议——序列化和反序列化

> 作者:დ旧言~ > 座右铭:松树千年终是朽,槿花一日自为荣。 > 目标:了解什么是序列化和分序列,并且自己能手撕网络版的计算器。 > 毒鸡汤:有些事情,总是不明白,所以我不…

Darknet 连接教程

本篇文章仅供学习,严禁用于非法用途。 1,前言: 首先明确一点,Darknet真没那么神奇,虽然有些技术文章的确很有水平,对于前端学习,软件开发以及PHP和一些服务器端维护都有许多文章,但…

Windows密码的网络认证---基于挑战响应认证的NTLM协议

一,网络认证NTLM协议简介 在平时的测试中,经常会碰到处于工作组的计算机,处于工作组的计算机之间是无法建立一个可信的信托机构的,只能是点对点进行信息的传输。 举个例子就是,主机A想要访问主机B上的资源,…

北斗有源终端|智能5G单北斗终端|单兵|单北斗|手持机

在当今科技日新月异的时代,智能设备的创新与升级速度令人目不暇接。其中,智能5G终端作为连接数字世界的桥梁,正逐步渗透到我们生活的方方面面。今天,让我们聚焦于一款集尖端科技与实用功能于一身的智能5G设备——QM-L5智能5G单北斗…

如何对数据库的表字段加密解密处理?

对于表格数据的加密处理,通常涉及到对数据库中存储的数据进行加密,以保护敏感信息。 Java示例(使用AES算法加密数据库表数据) 首先,你需要一个数据库连接,这里假设你使用的是JDBC连接MySQL数据库。以下是…

【AI+教育】一些记录@2024.11.04

一、尝新 今天尝试了使用九章随时问,起因是看到快刀青衣的AI产品好用榜,里面这么介绍九章随时问:「它不是像其他产品那样,直接给你出答案。而是跟你语音对话,你会感觉更像是有一位老师坐在你的旁边,一步步…

DNS域名解析实验

准备工作 [rootlocalhost ~]# setenforce 0 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# mount /dev/sr0 /mnt [rootlocalhost ~]# dnf install bind -y DNS正向解析: 对主配置文件进行修改 [rootlocalhost ~]# vim /etc/named.conf 正向解析…

Jmeter参数化的4种方法 你get了吗?

1. 用Jmeter中的函数获取参数值 __Random,__threadNum,__CSVRead,__StringFromFile,具体调用方法如下: KaTeX parse error: Expected group after _ at position 2: {_̲_Random(,,)},,KaTeX p…

C语言 运算符

时间:2024.11.4 一、学习内容 1、算数运算符(加、减、乘、除法和取余) 通用细节: 1.整数计算,结果一定是一个整数 2.小数计算,结果一定是一个小数 3.整数和小数计算,结果一定是一…

贝叶斯+PINN!双重热点buff叠加,轻松斩获Nature子刊!

PINN一直以来都是顶会顶刊上的大热方向,相关研究量多且质量高。最近,有关“贝叶斯PINN”的研究取得了不少突破,多项成果被Neurips、Nature子刊等录用。 事实上,这个结合方向的研究热度正逐渐上升,因为其在提高泛化能力…

Python模拟真人动态生成鼠标滑动路径

一.简介 鼠标轨迹算法是一种模拟人类鼠标操作的程序,它能够模拟出自然而真实的鼠标移动路径。 鼠标轨迹算法的底层实现采用C/C语言,原因在于C/C提供了高性能的执行能力和直接访问操作系统底层资源的能力。 鼠标轨迹算法具有以下优势: 模拟…

react-router与react-router-dom的区别

写法上的区别: 写法1: import {Swtich, Route, Router, HashHistory, Link} from react-router-dom;写法2: import {Switch, Route, Router} from react-router; import {HashHistory, Link} from react-router-dom;react-router实现了路由的核心功能 react-router-…

为数据集而生的 SQL 控制台

随着数据集的使用量急剧增加,Hugging Face 社区已经变成了众多数据集默认存放的仓库。每月,海量数据集被上传到社区,这些数据集亟需有效的查询、过滤和发现。 Dataset Monthly Creations 每个月在 Hugging Face Hub 创建的数据集 我们现在非常…