基于hive分析Flask为后端框架echarts为前端框架的招聘网站可视化大屏项目
1. 项目概述
项目目标是构建一个大数据分析系统,包含以下核心模块:
1、数据爬取:通过request请求获取猎聘网的就业数据。
2、数据存储和分析:使用 Hive 进行数据存储和分析。
3、数据迁移:使用sqoop将hive数据导入mysql。
4、后端服务:使用 Flask 搭建数据接口,将分析结果提供给前端。
5、数据可视化:使用 ECharts 制作大屏展示,实现数据的图形化呈现。
2. 项目环境准备
在开始之前,需要搭建如下环境:
Hive:作为数据仓库,用于存储和分析数据。
Flask:轻量级 Python Web 框架,用于构建后端 RESTful API。
ECharts:JavaScript 图表库,用于前端数据可视化。
MySQL:用于保存一些系统配置或小规模数据。
Sqoop:数据同步工具,将hive数据同步到mysql。
3、数据爬取
通过python获取猎聘网的照片信息,存储到csv文件里
import csv
import timeimport requests
import execjsfrom storage.csv2mysql import sync_data2dbf = open('../storage/data.csv', mode='a', encoding='utf-8')
csv_writer = csv.DictWriter(f,fieldnames=['职位','城市','薪资','经验','标签','公司','公司领域','公司规模'])
csv_writer.writeheader()def read_js_code():f= open('/Users/shareit/workspace/chart_show/demo.js',encoding='utf-8')txt = f.read()js_code = execjs.compile(txt)ckId = js_code.call('r',32)return ckIddef post_data():read_js_code()url = "https://api-c.liepin.com/api/com.liepin.searchfront4c.pc-search-job"headers = {'Accept': 'application/json, text/plain, */*','Accept-Encoding': 'gzip, deflate, br','Accept-Language': 'zh-CN,zh;q=0.9','Connection': 'keep-alive','Sec-Ch-Ua-Platform':'macOS','Content-Length': '398','Content-Type': 'application/json;charset=UTF-8;','Host': 'api-c.liepin.com','User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36','Origin': 'https://www.liepin.com','Referer': 'https://www.liepin.com/','Sec-Ch-Ua': '"Google Chrome";v="119", "Chromium";v="119", "Not?A_Brand";v="24"','Sec-Ch-Ua-Mobile': '?0','Sec-Fetch-Dest': 'empty','Sec-Fetch-Mode': 'cors','Sec-Fetch-Site': 'same-site','X-Client-Type': 'web','X-Fscp-Bi-Stat': '{"location": "https://www.liepin.com/zhaopin"}','X-Fscp-Fe-Version': '','X-Fscp-Std-Info': '{"client_id": "40108"}','X-Fscp-Trace-Id': '52262313-e6ca-4cfd-bb67-41b4a32b8bb5','X-Fscp-Version': '1.1','X-Requested-With': 'XMLHttpRequest',}list = ["H01$H0001","H01$H0002","H01$H0003","H01$H0004","H01$H0005","H01$H0006","H01$H0007","H01$H0008","H01$H0009","H01$H00010","H02$H0018","H02$H0019","H03$H0022","H03$H0023","H03$H0024","H03$H0025","H04$H0030","H04$H0031","H04$H0032","H05$H05","H06$H06","H07$H07","H08$H08"]for name in list:print("-------{}---------".format(name))for i in range(10):print("------------第{}页-----------".format(i))data = {"data": {"mainSearchPcConditionForm":{"city": "410", "dq": "410", "pubTime": "", "currentPage": i, "pageSize": 40, "key": "","suggestTag": "", "workYearCode": "1", "compId": "", "compName": "", "compTag": "","industry": name, "salary": "", "jobKind": "", "compScale": "", "compKind": "", "compStage": "","eduLevel": ""},"passThroughForm":{"scene": "page", "skId": "z33lm3jhwza7k1xjvcyn8lb8e9ghxx1b","fkId": "z33lm3jhwza7k1xjvcyn8lb8e9ghxx1b","ckId": read_js_code(),'sfrom': 'search_job_pc'}}}response = requests.post(url=url, json=data, headers=headers)time.sleep(2)parse_data(response)def parse_data(response):try:jobCardList = response.json()['data']['data']['jobCardList']except Exception as e:return
4、加载hive数据进行分析
1、将storage下的data.csv上传到虚拟机上
2、创建work_base表,并将data.csv数据加载到hive表里
CREATE TABLE work_base (id INT COMMENT 'id',title STRING COMMENT '标题',city STRING COMMENT '城市',salary STRING COMMENT '薪资',campus_job_kind STRING COMMENT '经验',labels STRING COMMENT '标签',compName STRING COMMENT '公司',compIndustry STRING COMMENT '公司领域',compScale STRING COMMENT '公司规模'
) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE;LOAD local DATA INPATH './data.csv' OVERWRITE INTO TABLE flask_work.work_base;
3、创建hive ads层数仓表进行分析
-- 4. 热门公司分析
CREATE TABLE top_companies (company_name STRING COMMENT '公司名称',job_count INT COMMENT '职位数量'
) STORED AS TEXTFILE;INSERT INTO top_companies
SELECT compName, COUNT(*) AS job_count
FROM work_base
GROUP BY compName
ORDER BY job_count DESC
LIMIT 10;-- 5. 岗位分布情况分析
CREATE TABLE job_distribution (job_title STRING COMMENT '岗位名称',job_count INT COMMENT '职位数量'
) STORED AS TEXTFILE;INSERT INTO job_distribution
SELECT title, COUNT(*) AS job_count
FROM work_base
GROUP BY title;-- 6. 学历要求分析
CREATE TABLE education_requirements (education_level STRING COMMENT '学历要求',job_count INT COMMENT '职位数量'
) STORED AS TEXTFILE;INSERT INTO education_requirements
SELECTCASEWHEN labels LIKE '%博士%' THEN '博士'WHEN labels LIKE '%硕士%' THEN '硕士'WHEN labels LIKE '%本科%' THEN '本科'WHEN labels LIKE '%大专%' THEN '大专'ELSE '其他'END AS education_level,COUNT(*) AS job_count
FROM work_base
GROUP BY education_level;-- 7. 薪资待遇分析(各个城市的平均薪资)
CREATE TABLE city_salary_analysis (city STRING COMMENT '城市',avg_salary DOUBLE COMMENT '平均薪资'
) STORED AS TEXTFILE;INSERT INTO city_salary_analysis
SELECT city, AVG(CAST(salary AS DOUBLE)) AS avg_salary
FROM work_base
WHERE salary RLIKE '^[0-9]+$'
GROUP BY city;
5、将hive分析的结果数据导入mysql
使用sqoop迁移数据
sqoop export \--connect jdbc:mysql://localhost:3306/flask_work \--username root --password '123456' \--table city_job_count \--export-dir /hive/warehouse/flask_work.db/flask_work.city_job_count \--input-fields-terminated-by '\001' \--input-lines-terminated-by '\n';sqoop export \--connect jdbc:mysql:// localhost:3306/flask_work \--username root --password 123456 \--table job_salary_analysis \--export-dir /user/hive/warehouse/flask_work.db/flask_work.job_salary_analysis \--input-fields-terminated-by '\001' \--input-lines-terminated-by '\n'sqoop export \--connect jdbc:mysql:// localhost:3306/flask_work \--username root --password 123456 \--table top_companies \--export-dir /user/hive/warehouse/flask_work.db/flask_work.top_companies \--input-fields-terminated-by '\001' \--input-lines-terminated-by '\n'sqoop export \--connect jdbc:mysql:// localhost:3306/flask_work \--username root --password 123456 \--table job_distribution \--export-dir /user/hive/warehouse/flask_work.db/flask_work.job_distribution \--input-fields-terminated-by '\001' \--input-lines-terminated-by '\n'
6. 后端服务(Flask)
使用 Flask 构建后端服务,编写rest api,读取mysql数据提供给前端页面进行展示
app.py
from flask import Flask, render_template, request, flash, redirect, url_for
from data import *
from service.task_service import get_user, register_userapp = Flask(__name__)
app.secret_key = 'b6b52fae-5618-4805-b368-501c62c6d1df'@app.after_request
def add_header(response):response.cache_control.max_age = 0return response@app.route('/', methods=['GET', 'POST'])
def login():if request.method == 'POST':username = request.form['username']password = request.form['password']user = get_user(username, password)# 检查用户是否存在if user is not None:data = SourceData()return render_template('index.html', form=data, title=data.title)else:# 用户名或密码错误,显示错误消息flash('用户名或密码错误')return redirect(url_for('login')) # 重定向回登录页面# 如果是 GET 请求,则直接返回登录页面return render_template('login.html')@app.route('/register', methods=['GET', 'POST'])
def register():if request.method == 'POST':username = request.form.get('username')password = request.form.get('password')if username and password:register_user(username, password) # 确保此函数已定义return "注册成功!"flash('用户名和密码不能为空')return redirect(url_for('register'))return render_template('register.html')if __name__ == "__main__":app.run(host='127.0.0.1', debug=False)
task_service.py
import pymysqldb_config = {'host': '127.0.0.1','user': 'root','password': '12345678','database': 'flask_work','charset': 'utf8mb4','cursorclass': pymysql.cursors.DictCursor
}
connection = pymysql.connect(**db_config)def get_user(username,password):try:with connection.cursor() as cursor:select_query = "select * from user where username = %s and password = %s"cursor.execute(select_query,(username,password))result = cursor.fetchall()return result[0]except Exception as e:print(e)return Nonedef get_title_count():try:with connection.cursor() as cursor:select_query = "select count(distinct(city)) city,count(distinct(compName)) compName from work_base;"cursor.execute(select_query)result = cursor.fetchall()a=result[0]['city']b=result[0]['compName']return a,bexcept Exception as e:print(e)return Nonedef work_count_by_city():try:with connection.cursor() as cursor:select_query = "select city,job_count from city_job_count order by job_count desc limit 10"cursor.execute(select_query)result = cursor.fetchall()re_list = []for re in result:re_list.append({"name": re['city'], "value": re['job_count']})print(re_list)return re_listexcept Exception as e:print(e)return Nonedef work_avg_salary():try:with connection.cursor() as cursor:select_query = "select job_title,avg_salary from job_salary_analysis order by avg_salary desc limit 10;"cursor.execute(select_query)result = cursor.fetchall()re_list = []for re in result:re_list.append({"name": re['job_title'][0:8], "value": int(re['avg_salary'])})print(re_list)return re_listexcept Exception as e:print(e)return Nonedef top_companies():try:with connection.cursor() as cursor:select_query = "select company_name,job_count from top_companies limit 3;"cursor.execute(select_query)result = cursor.fetchall()re_list = []for re in result:re_list.append({"name": re['company_name'], "value": re['job_count']})print(re_list)return re_listexcept Exception as e:print(e)return Nonedef job_distribution_count():try:with connection.cursor() as cursor:select_query = "select job_title,job_count from job_distribution order by job_count desc limit 10;"cursor.execute(select_query)result = cursor.fetchall()re_list = []for re in result:re_list.append({"name": re['job_title'][0:6], "value": re['job_count'],"value2": 20, "color": "01", "radius": ['59%', '70%']})print(re_list)return re_listexcept Exception as e:print(e)return Nonedef register_user(username,password):try:with connection.cursor() as cursor:select_query = "insert into user(username,password) values(%s,%s)"cursor.execute(select_query,(username,password))connection.commit()except Exception as e:print(e)return Nonedef education_requirements():try:with connection.cursor() as cursor:select_query = "select education_level,job_count from education_requirements;"cursor.execute(select_query)result = cursor.fetchall()re_list = []for re in result:re_list.append({"name": re['education_level'], "value": int(re['job_count'])})return re_listexcept Exception as e:print(e)return Nonedef city_salary_analysis():try:with connection.cursor() as cursor:select_query = "select city,avg_salary from city_salary_analysis order by avg_salary desc limit 10;"cursor.execute(select_query)result = cursor.fetchall()re_list = []for re in result:re_list.append({"name": re['city'], "value": int(re['avg_salary'])})return re_listexcept Exception as e:print(e)return Noneif __name__ == '__main__':print(city_salary_analysis())
7 页面设计
前端采用 ECharts 制作一个招聘网站大数据分析的可视化大屏。
使用 ECharts 渲染数据
<!doctype html>
<html>
<head><meta charset="utf-8"><title>index</title><script type="text/javascript" src="../static/js/jquery.js"></script><script type="text/javascript" src="../static/js/echarts.min.js"></script><script type="text/javascript" src="../static/js/china.js"></script><link rel="stylesheet" href="../static/css/comon0.css">
</head>
<script>$(window).load(function(){$(".loading").fadeOut()})/****/
$(document).ready(function(){var whei=$(window).width()$("html").css({fontSize:whei/20})$(window).resize(function(){var whei=$(window).width()$("html").css({fontSize:whei/20})
});});</script>
<script type="text/javascript" src="../static/js/echarts.min.js"></script>
<script type="text/javascript" src="../static/js/china.js"></script><body>
<div class="canvas" style="opacity: .2"><iframe frameborder="0" src="../static/js/index.html" style="width: 100%; height: 100%"></iframe>
</div>
<div class="loading"><div class="loadbox"><img src="../static/picture/loading.gif"> 页面加载中...</div>
</div>
<div class="head"><h1>{{title}}</h1><div class="weather"><!-- <img src="picture/weather.png"><span>多云转小雨</span>--><span id="showTime"></span></div><script>
var t = null;t = setTimeout(time,1000);//開始运行function time(){clearTimeout(t);//清除定时器dt = new Date();var y=dt.getFullYear();var mt=dt.getMonth()+1;var day=dt.getDate();var h=dt.getHours();//获取时var m=dt.getMinutes();//获取分var s=dt.getSeconds();//获取秒document.getElementById("showTime").innerHTML = y+"年"+mt+"月"+day+"日"+"-"+h+"时"+m+"分"+s+"秒";t = setTimeout(time,1000); //设定定时器,循环运行}</script></div>
<div class="mainbox"><ul class="clearfix"><li><div class="boxall" style="height: 3.2rem"><div class="alltitle">{{form.echart1.title}}</div><div class="allnav" id="echart1"></div><div class="boxfoot"></div></div><div class="boxall" style="height: 3.2rem"><div class="alltitle">{{form.echart2.title}}</div><div class="allnav" id="echart2"></div><div class="boxfoot"></div></div><div class="boxall" style="height: 3.2rem"><div style="height:100%; width: 100%;"><div class="alltitle">{{form.echart3.title}}</div><div class="allnav" id="echart3"></div></div><div class="boxfoot"></div></div></li><li><div class="bar"><div class="barbox"><ul class="clearfix"><li class="pulll_left counter">{{form.counter.value}}</li><li class="pulll_left counter">{{form.counter2.value}}</li></ul></div><div class="barbox2"><ul class="clearfix"><li class="pulll_left">{{form.counter.name}}</li><li class="pulll_left">{{form.counter2.name}}</li></ul></div></div><div class="map"><div class="map1"><img src="../static/picture/lbx.png"></div><div class="map2"><img src="../static/picture/jt.png"></div><div class="map3"><img src="../static/picture/map.png"></div><div class="map4" id="map_1"></div></div></li><li><div class="boxall" style="height:3.4rem"><div class="alltitle">{{form.echart4.title}}</div><div class="allnav" id="echart4"></div><div class="boxfoot"></div></div><div class="boxall" style="height: 3.2rem"><div class="alltitle">{{form.echart5.title}}</div><div class="allnav" id="echart5"></div><div class="boxfoot"></div></div><div class="boxall" style="height: 3rem"><div class="alltitle">{{form.echart6.title}}</div><div class="allnav" id="echart6"></div><div class="boxfoot"></div></div></li></ul>
</div>
<div class="back"></div><!--echart1-->
<script>
$(function echarts_1() {// 基于准备好的dom,初始化echarts实例var myChart = echarts.init(document.getElementById('echart1'));option = {// backgroundColor: '#00265f',tooltip: {trigger: 'axis',axisPointer: {type: 'shadow'}},grid: {left: '0%',top:'10px',right: '0%',bottom: '4%',containLabel: true},xAxis: [{type: 'category',data: {{form.echart1.xAxis|safe}},axisLine: {show: true,lineStyle: {color: "rgba(255,255,255,.1)",width: 1,type: "solid"},},axisTick: {show: false,},axisLabel: {interval: 0,// rotate:50,show: true,splitNumber: 15,textStyle: {color: "rgba(255,255,255,.6)",fontSize: '12',},},}],yAxis: [{type: 'value',axisLabel: {//formatter: '{value} %'show:true,textStyle: {color: "rgba(255,255,255,.6)",fontSize: '12',},},axisTick: {show: false,},axisLine: {show: true,lineStyle: {color: "rgba(255,255,255,.1 )",width: 1,type: "solid"},},splitLine: {lineStyle: {color: "rgba(255,255,255,.1)",}}}],series: [{type: 'bar',data: {{form.echart1.series|safe}},barWidth:'35%', //柱子宽度// barGap: 1, //柱子之间间距itemStyle: {normal: {color:'#2f89cf',opacity: 1,barBorderRadius: 5,}}}]
};// 使用刚指定的配置项和数据显示图表。myChart.setOption(option);window.addEventListener("resize",function(){myChart.resize();});})</script>
<!--echart2-->
<script>$(function echarts_2() {// 基于准备好的dom,初始化echarts实例var myChart = echarts.init(document.getElementById('echart2'));option = {tooltip: {trigger: 'item' // 修改为 'item' 以适应散点图},grid: {left: '0%',top: '10px',right: '0%',bottom: '4%',containLabel: true},xAxis: [{type: 'category',data: {{form.echart2.xAxis|safe}},axisLine: {show: true,lineStyle: {color: "rgba(255,255,255,.1)",width: 1,type: "solid"},},axisTick: {show: false,},axisLabel: {interval: 0,rotate: 45, // 将标签旋转90度show: true,splitNumber: 15,textStyle: {color: "rgba(255,255,255,.6)",fontSize: '8',},},}],yAxis: [{type: 'value',axisLabel: {show: true,textStyle: {color: "rgba(255,255,255,.6)",fontSize: '12',},},axisTick: {show: false,},axisLine: {show: true,lineStyle: {color: "rgba(255,255,255,.1)",width: 1,type: "solid"},},splitLine: {lineStyle: {color: "rgba(255,255,255,.1)",}}}],series: [{type: 'scatter', // 将类型更改为 'scatter'data: {{form.echart2.series|safe}},symbolSize: 10, // 设置散点的大小itemStyle: {normal: {color: '#27d08a',opacity: 1,}}}]};// 使用刚指定的配置项和数据显示图表。myChart.setOption(option);window.addEventListener("resize", function() {myChart.resize();});})
</script><!--echart3-->
<script>$(function echarts_3() {// 基于准备好的dom,初始化echarts实例var myChart = echarts.init(document.getElementById('echart3'));// 配置项var option = {tooltip: {trigger: 'item',formatter: '{a} <br/>{b}: {c} ({d}%)' // 在悬停提示框中显示公司名称、数值和百分比},legend: {top: '5%',left: 'center',textStyle: {color: "rgba(255,255,255,.6)"}},series: [{name: '公司数据', // 扇形图系列名称type: 'pie',radius: ['40%', '70%'], // 内外半径,形成环形图avoidLabelOverlap: false,itemStyle: {borderRadius: 10,borderColor: '#fff',borderWidth: 2},labelLine: {show: true,length: 6,length2: 8,lineStyle: {color: "rgba(255,255,255,.6)"}},data:{{form.echart3.data|safe}},}]};// 使用刚指定的配置项和数据显示图表。myChart.setOption(option);window.addEventListener("resize", function() {myChart.resize();});});
</script><!--echarts4-->
<script>$(function echarts_4() {// 基于准备好的dom,初始化echarts实例var myChart = echarts.init(document.getElementById('echart4'));option = {tooltip: {trigger: 'item' // 修改为 'item' 以适应散点图},grid: {left: '0%',top: '10px',right: '0%',bottom: '4%',containLabel: true},xAxis: [{type: 'category',data: {{form.echart4.xAxis|safe}},axisLine: {show: true,lineStyle: {color: "rgba(255,255,255,.1)",width: 1,type: "solid"},},axisTick: {show: false,},axisLabel: {interval: 0,rotate: 45, // 将标签旋转90度show: true,splitNumber: 15,textStyle: {color: "rgba(255,255,255,.6)",fontSize: '8',},},}],yAxis: [{type: 'value',axisLabel: {show: true,textStyle: {color: "rgba(255,255,255,.6)",fontSize: '12',},},axisTick: {show: false,},axisLine: {show: true,lineStyle: {color: "rgba(255,255,255,.1)",width: 1,type: "solid"},},splitLine: {lineStyle: {color: "rgba(255,255,255,.1)",}}}],series: [{type: 'scatter', // 将类型更改为 'scatter'data: {{form.echart4.series|safe}},symbolSize: 10, // 设置散点的大小itemStyle: {normal: {color: '#27d08a',opacity: 1,}}}]};// 使用刚指定的配置项和数据显示图表。myChart.setOption(option);window.addEventListener("resize", function() {myChart.resize();});})
</script><!--echarts5-->
<script>
$(function echarts_5() {// 基于准备好的dom,初始化echarts实例var myChart = echarts.init(document.getElementById('echart5'));option = {tooltip: {trigger: 'axis',axisPointer: {type: 'line' // 修改为'line'以匹配折线图的样式}},grid: {left: '0%',top: '10px',right: '0%',bottom: '2%',containLabel: true},xAxis: [{type: 'category',data: {{form.echart5.xAxis|safe}},axisLine: {show: true,lineStyle: {color: "rgba(255,255,255,.1)",width: 1,type: "solid"},},axisTick: {show: false,},axisLabel: {rotate: 90,interval: 0,show: true,splitNumber: 15,textStyle: {color: "rgba(255,255,255,.6)",fontSize: '12',},},}],yAxis: [{type: 'value',axisLabel: {show: true,textStyle: {color: "rgba(255,255,255,.6)",fontSize: '12',},},axisTick: {show: false,},axisLine: {show: true,lineStyle: {color: "rgba(255,255,255,.1)",width: 1,type: "solid"},},splitLine: {lineStyle: {color: "rgba(255,255,255,.1)",}}}],series: [{type: 'line', // 修改为'line'类型data: {{form.echart5.series|safe}},smooth: true, // 可选:让折线平滑itemStyle: {color: '#2f89cf',opacity: 1,},lineStyle: {width: 2, // 线条宽度type: 'solid' // 线条类型}}]};// 使用刚指定的配置项和数据显示图表。myChart.setOption(option);window.addEventListener("resize", function() {myChart.resize();});
})
</script><!--echarts6-->
<script>$(function echarts_6() {var myChart = echarts.init(document.getElementById('echart6'));var option = {tooltip: {},radar: {indicator: {{form.echart6.data|safe}}},series: [{type: 'radar',data: [{value: [5500, 7000, 11064, 9500, 7469, 6250, 0, 7500, 6250, 7000],name: '城市指标'}]}]};myChart.setOption(option);window.addEventListener("resize", function() {myChart.resize();});});
</script><!--map_1-->
<script>
$(function map() {// 基于准备好的dom,初始化echarts实例var myChart = echarts.init(document.getElementById('map_1'));
var data = {{form.map_1.data|safe}};
var geoCoordMap = {'海门':[121.15,31.89],'鄂尔多斯':[109.781327,39.608266],'招远':[120.38,37.35],'舟山':[122.207216,29.985295],'齐齐哈尔':[123.97,47.33],'盐城':[120.13,33.38],'赤峰':[118.87,42.28],'青岛':[120.33,36.07],'乳山':[121.52,36.89],'金昌':[102.188043,38.520089],'泉州':[118.58,24.93],'莱西':[120.53,36.86],'日照':[119.46,35.42],'胶南':[119.97,35.88],'南通':[121.05,32.08],'拉萨':[91.11,29.97],'云浮':[112.02,22.93],'梅州':[116.1,24.55],'文登':[122.05,37.2],'上海':[121.48,31.22],'攀枝花':[101.718637,26.582347],'威海':[122.1,37.5],'承德':[117.93,40.97],'厦门':[118.1,24.46],'汕尾':[115.375279,22.786211],'潮州':[116.63,23.68],'丹东':[124.37,40.13],'太仓':[121.1,31.45],'曲靖':[103.79,25.51],'烟台':[121.39,37.52],'福州':[119.3,26.08],'瓦房店':[121.979603,39.627114],'即墨':[120.45,36.38],'抚顺':[123.97,41.97],'玉溪':[102.52,24.35],'张家口':[114.87,40.82],'阳泉':[113.57,37.85],'莱州':[119.942327,37.177017],'湖州':[120.1,30.86],'汕头':[116.69,23.39],'昆山':[120.95,31.39],'宁波':[121.56,29.86],'湛江':[110.359377,21.270708],'揭阳':[116.35,23.55],'荣成':[122.41,37.16],'连云港':[119.16,34.59],'葫芦岛':[120.836932,40.711052],'常熟':[120.74,31.64],'东莞':[113.75,23.04],'河源':[114.68,23.73],'淮安':[119.15,33.5],'泰州':[119.9,32.49],'南宁':[108.33,22.84],'营口':[122.18,40.65],'惠州':[114.4,23.09],'江阴':[120.26,31.91],'蓬莱':[120.75,37.8],'韶关':[113.62,24.84],'嘉峪关':[98.289152,39.77313],'广州':[113.23,23.16],'延安':[109.47,36.6],'太原':[112.53,37.87],'清远':[113.01,23.7],'中山':[113.38,22.52],'昆明':[102.73,25.04],'寿光':[118.73,36.86],'盘锦':[122.070714,41.119997],'长治':[113.08,36.18],'深圳':[114.07,22.62],'珠海':[113.52,22.3],'宿迁':[118.3,33.96],'咸阳':[108.72,34.36],'铜川':[109.11,35.09],'平度':[119.97,36.77],'佛山':[113.11,23.05],'海口':[110.35,20.02],'江门':[113.06,22.61],'章丘':[117.53,36.72],'肇庆':[112.44,23.05],'大连':[121.62,38.92],'临汾':[111.5,36.08],'吴江':[120.63,31.16],'石嘴山':[106.39,39.04],'沈阳':[123.38,41.8],'苏州':[120.62,31.32],'茂名':[110.88,21.68],'嘉兴':[120.76,30.77],'长春':[125.35,43.88],'胶州':[120.03336,36.264622],'银川':[106.27,38.47],'张家港':[120.555821,31.875428],'三门峡':[111.19,34.76],'锦州':[121.15,41.13],'南昌':[115.89,28.68],'柳州':[109.4,24.33],'三亚':[109.511909,18.252847],'自贡':[104.778442,29.33903],'吉林':[126.57,43.87],'阳江':[111.95,21.85],'泸州':[105.39,28.91],'西宁':[101.74,36.56],'宜宾':[104.56,29.77],'呼和浩特':[111.65,40.82],'成都':[104.06,30.67],'大同':[113.3,40.12],'镇江':[119.44,32.2],'桂林':[110.28,25.29],'张家界':[110.479191,29.117096],'宜兴':[119.82,31.36],'北海':[109.12,21.49],'西安':[108.95,34.27],'金坛':[119.56,31.74],'东营':[118.49,37.46],'牡丹江':[129.58,44.6],'遵义':[106.9,27.7],'绍兴':[120.58,30.01],'扬州':[119.42,32.39],'常州':[119.95,31.79],'潍坊':[119.1,36.62],'重庆':[106.54,29.59],'台州':[121.420757,28.656386],'南京':[118.78,32.04],'滨州':[118.03,37.36],'贵阳':[106.71,26.57],'无锡':[120.29,31.59],'本溪':[123.73,41.3],'克拉玛依':[84.77,45.59],'渭南':[109.5,34.52],'马鞍山':[118.48,31.56],'宝鸡':[107.15,34.38],'焦作':[113.21,35.24],'句容':[119.16,31.95],'北京':[116.46,39.92],'徐州':[117.2,34.26],'衡水':[115.72,37.72],'包头':[110,40.58],'绵阳':[104.73,31.48],'乌鲁木齐':[87.68,43.77],'枣庄':[117.57,34.86],'杭州':[120.19,30.26],'淄博':[118.05,36.78],'鞍山':[122.85,41.12],'溧阳':[119.48,31.43],'库尔勒':[86.06,41.68],'安阳':[114.35,36.1],'开封':[114.35,34.79],'济南':[117,36.65],'德阳':[104.37,31.13],'温州':[120.65,28.01],'九江':[115.97,29.71],'邯郸':[114.47,36.6],'临安':[119.72,30.23],'兰州':[103.73,36.03],'沧州':[116.83,38.33],'临沂':[118.35,35.05],'南充':[106.110698,30.837793],'天津':[117.2,39.13],'富阳':[119.95,30.07],'泰安':[117.13,36.18],'诸暨':[120.23,29.71],'郑州':[113.65,34.76],'哈尔滨':[126.63,45.75],'聊城':[115.97,36.45],'芜湖':[118.38,31.33],'唐山':[118.02,39.63],'平顶山':[113.29,33.75],'邢台':[114.48,37.05],'德州':[116.29,37.45],'济宁':[116.59,35.38],'荆州':[112.239741,30.335165],'宜昌':[111.3,30.7],'义乌':[120.06,29.32],'丽水':[119.92,28.45],'洛阳':[112.44,34.7],'秦皇岛':[119.57,39.95],'株洲':[113.16,27.83],'石家庄':[114.48,38.03],'莱芜':[117.67,36.19],'常德':[111.69,29.05],'保定':[115.48,38.85],'湘潭':[112.91,27.87],'金华':[119.64,29.12],'岳阳':[113.09,29.37],'长沙':[113,28.21],'衢州':[118.88,28.97],'廊坊':[116.7,39.53],'菏泽':[115.480656,35.23375],'合肥':[117.27,31.86],'武汉':[114.31,30.52],'大庆':[125.03,46.58]
};
var convertData = function (data) {var res = [];for (var i = 0; i < data.length; i++) {var geoCoord = geoCoordMap[data[i].name];if (geoCoord) {res.push({name: data[i].name,value: geoCoord.concat(data[i].value)});}}return res;
};option = {tooltip : {trigger: 'item',formatter: function (params) {if(typeof(params.value)[2] == "undefined"){return params.name + ' : ' + params.value;}else{return params.name + ' : ' + params.value[2];}}},geo: {map: 'china',label: {emphasis: {show: false}},roam: false,//禁止其放大缩小itemStyle: {normal: {areaColor: '#4c60ff',borderColor: '#002097'},emphasis: {areaColor: '#293fff'}}},series : [{name: '消费金额',type: 'scatter',coordinateSystem: 'geo',data: convertData(data),symbolSize: function (val) {return val[2] / {{form.map_1.symbolSize}};},label: {normal: {formatter: '{b}',position: 'right',show: false},emphasis: {show: true}},itemStyle: {normal: {color: '#ffeb7b'}}}]
};myChart.setOption(option);window.addEventListener("resize",function(){myChart.resize();});}
)</script></body>
</html>
8、总结
通过 request爬虫获取数据,使用Hive 进行大数据分析、通过sqoop进行数据迁移,最后使用Flask 构建后端接口获取mysql数据提供给前端,再结合 ECharts 前端可视化,能够构建一个完整的大数据展示系统。
如有遇到问题可以找小编沟通交流哦。另外小编帮忙辅导大课作业,学生毕设等。不限于MapReduce, MySQL, python,java,大数据,模型训练等。 hadoop hdfs yarn spark Django flask flink kafka flume datax sqoop seatunnel echart可视化 机器学习等