数据结构与算法:贪心算法与应用场景

目录

11.1 贪心算法的原理

11.2 经典贪心问题

11.3 贪心算法在图中的应用

11.4 贪心算法的优化与扩展

总结


数据结构与算法:贪心算法与应用场景

贪心算法是一种通过选择当前最佳解来构造整体最优解的算法策略。贪心算法在很多实际问题中都取得了良好的效果,尤其在那些具有贪心选择性质和最优子结构的问题上。本章将深入探讨贪心算法的基本原理、经典问题及其应用,并使用表格对比贪心算法与其他算法的不同。

11.1 贪心算法的原理

贪心算法的核心思想是每一步都采取在当前情况下最优的选择,从而希望通过一系列最优的局部选择来达到整体最优。贪心算法适用于那些能够通过局部最优解构建全局最优解的问题。

贪心算法要素描述
贪心选择性质每一步的选择都可以保证局部最优,而不影响后续决策的整体最优性。
最优子结构整体问题的最优解由各个子问题的最优解组成。
与动态规划对比贪心算法只看局部最优,而动态规划则考虑所有可能的解。

贪心算法在一些问题中非常有效,但并不是所有问题都能通过贪心策略解决。问题是否适用贪心算法,需要仔细分析其贪心选择性质和最优子结构。

11.2 经典贪心问题

贪心算法在很多经典问题中都有应用,以下是几个典型的贪心问题。

问题名称问题描述贪心策略复杂度
活动选择问题从一组活动中选择尽可能多的互不重叠的活动。每次选择最早结束的活动。O(n log n)
哈夫曼编码构建最优二进制前缀码以压缩数据。每次合并最小权值的两个节点。O(n log n)
区间调度问题安排最大数量的兼容区间活动。每次选择最早结束的区间。O(n log n)
找零问题用最少的硬币数量找零(假设硬币面值适合贪心策略)。每次选择面值最大的硬币。O(n)

代码示例:活动选择问题的实现

#include <stdio.h>
#include <stdlib.h>struct Activity {int start;int end;
};int compare(const void* a, const void* b) {return ((struct Activity*)a)->end - ((struct Activity*)b)->end;
}void activitySelection(struct Activity activities[], int n) {qsort(activities, n, sizeof(struct Activity), compare);printf("选择的活动: \n");int i = 0;printf("(%d, %d)\n", activities[i].start, activities[i].end);for (int j = 1; j < n; j++) {if (activities[j].start >= activities[i].end) {printf("(%d, %d)\n", activities[j].start, activities[j].end);i = j;}}
}int main() {struct Activity activities[] = {{1, 3}, {2, 5}, {4, 7}, {1, 8}, {5, 9}, {8, 10}};int n = sizeof(activities) / sizeof(activities[0]);activitySelection(activities, n);return 0;
}

在上述代码中,通过贪心策略选择最早结束的活动,可以得到一组互不重叠的活动,从而最大化所选活动的数量。

11.3 贪心算法在图中的应用

贪心算法在图论中也有广泛应用,尤其是在最小生成树和最短路径问题中。

算法名称问题描述贪心策略复杂度
Prim算法构建最小生成树,使得总权重最小。每次选择权值最小且能扩展树的边。O(V^2) 或 O(E log V)
Kruskal算法构建最小生成树,使得总权重最小。每次选择权值最小且不形成环的边。O(E log E)
Dijkstra算法从单源点出发,找到到其他各点的最短路径。每次选择当前距离最小的未处理顶点。O(V^2) 或 O(E log V)

代码示例:Prim算法的实现

#include <stdio.h>
#include <limits.h>
#include <stdbool.h>
#define V 5int minKey(int key[], bool mstSet[]) {int min = INT_MAX, minIndex;for (int v = 0; v < V; v++) {if (mstSet[v] == false && key[v] < min) {min = key[v], minIndex = v;}}return minIndex;
}void printMST(int parent[], int graph[V][V]) {printf("边  权重\n");for (int i = 1; i < V; i++) {printf("%d - %d    %d\n", parent[i], i, graph[i][parent[i]]);}
}void primMST(int graph[V][V]) {int parent[V];int key[V];bool mstSet[V];for (int i = 0; i < V; i++) {key[i] = INT_MAX, mstSet[i] = false;}key[0] = 0;parent[0] = -1;for (int count = 0; count < V - 1; count++) {int u = minKey(key, mstSet);mstSet[u] = true;for (int v = 0; v < V; v++) {if (graph[u][v] && mstSet[v] == false && graph[u][v] < key[v]) {parent[v] = u, key[v] = graph[u][v];}}}printMST(parent, graph);
}int main() {int graph[V][V] = {{0, 2, 0, 6, 0},{2, 0, 3, 8, 5},{0, 3, 0, 0, 7},{6, 8, 0, 0, 9},{0, 5, 7, 9, 0}};primMST(graph);return 0;
}

在这个代码中,通过 Prim 算法找到最小生成树,每次选择未被包含在树中的、具有最小权重的边来扩展生成树。

11.4 贪心算法的优化与扩展

虽然贪心算法在某些问题上能够很好地工作,但它的局限性在于无法保证所有情况下的全局最优解。因此,针对特定问题,可以通过以下方法对贪心算法进行优化或扩展:

优化策略描述
启发式优化在贪心选择的基础上加入启发式信息,提高对全局解的估计精度。
与动态规划结合将贪心算法与动态规划结合,使用动态规划来处理贪心策略的不足。
混合算法将贪心算法与其他算法结合,如回溯或分支限界,以求得最优解。

贪心算法在很多情况下非常高效,但对于无法满足贪心性质的问题,需要考虑其他的算法策略。通过将贪心与动态规划等方法结合,通常可以找到更优的解。

总结

本章深入介绍了贪心算法的基本原理及其在各种经典问题中的应用。通过表格比较和代码示例,我们了解了贪心算法在活动选择、最小生成树、最短路径等场景中的广泛应用。同时,我们讨论了贪心算法的局限性及其与其他算法的结合方式。在下一章中,我们将深入探讨动态规划的核心思想及其在复杂问题中的应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/57485.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

NGINX 保护 Web 应用安全之基于 IP 地址的访问

根据客户端的 IP 地址控制访问 使用 HTTP 或 stream 访问模块控制对受保护资源的访问&#xff1a; location /admin/ { deny 10.0.0.1; allow 10.0.0.0/20; allow 2001:0db8::/32; deny all; } } 给定的 location 代码块允许来自 10.0.0.0/20 中的任何 IPv4 地址访问&#xf…

如何保证测试用例的充分性?

需求理解与分析&#xff1a; 深入理解软件需求规格说明书&#xff08;SRS&#xff09;&#xff0c;确保所有需求都被正确理解。 将需求分解为更小的、可测试的功能点或特性。 等价类划分&#xff1a; 将输入数据划分为若干等价类&#xff0c;从每个等价类中选取一个或少数几个…

【AIGC】优化长提示词Prompt:提升ChatGPT输出内容的准确性与实用性

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: AIGC | ChatGPT 文章目录 &#x1f4af;前言&#x1f4af;长提示词的挑战&#x1f4af;谷歌的优化长提示词技术关键因素分析 &#x1f4af;长提示词的设计原则&#x1f4af;优化长提示词的新框架方法&#x1f4af;实验结果分析不…

“网络协议入门:HTTP通信的四大组成部分“

White graces&#xff1a;个人主页 &#x1f649;专栏推荐:Java入门知识&#x1f649; &#x1f439;今日诗词: 春水满四泽&#xff0c;夏云多奇峰&#x1f439; ⛳️点赞 ☀️收藏⭐️关注&#x1f4ac;卑微小博主&#x1f64f; ⛳️点赞 ☀️收藏⭐️关注&#x1f4ac;卑微…

Android 13 SystemUI 隐藏下拉快捷面板部分模块(wifi,bt,nfc等)入口

frameworks/base/packages/SystemUI/src/com/android/systemui/qs/tileimpl/QSFactoryImpl.java createTileInternal(tileSpec)方法注释想隐藏的模块即可。

【leetcode|哈希表、动态规划】最长连续序列、最大子数组和

目录 最长连续序列 解法一&#xff1a;暴力枚举 复杂度 解法二&#xff1a;优化解法一省去二层循环中不必要的遍历 复杂度 最大子数组和 解法一&#xff1a;暴力枚举 复杂度 解法二&#xff1a;贪心 复杂度 解法三&#xff1a;动态规划 复杂度 最长连续序列 输入输…

Mac 远程 Windows 等桌面操作系统工具 Microsoft Remote Desktop for Mac 下载安装详细使用教程

最近需要在 Mac 上远程连接控制我的 windows 电脑系统&#xff0c;经过一番尝试对于 win 来说还是微软自家推出的 Microsoft Remote Desktop for Mac 最最好用&#xff0c;没有之一 简介 Microsoft Remote Desktop是一款由微软公司开发的远程桌面连接工具&#xff0c;可以让用…

Linux基础——信号

目录 1. 什么是信号&#xff1f; 2. 信号的产生 ①键盘的组合键 ②kill命令 ④产生异常 ⑤软件条件 ⑥进程等待中的core dump 3. 信号的保存 ①信号的发送与接收 ②为什么需要保存信号&#xff1f; ③信号是如何保存的 4. 信号的捕捉处理 ①信号的处理与处理时机…

Redis Time Series介绍和命令大全

Redis Time Series介绍和命令大全 Redis Time Series1 时序序列是什么2 Redis Time Series的特性3 內存模型4 命令详解命名链接表命名详解表TS.CREATETS.ADDTS.ALTERTS.CREATERULETS.DECRBYTS.DELTS.DELETERULETS.GETTS.INCRBYTS.INFOTS.MADDTS.MGETTS.MRANGETS.MREVRANGETS.QU…

WORFBENCH:一个创新的评估基准,目的是全面测试大型语言模型在生成复杂工作流 方面的性能。

2024-10-10,由浙江大学和阿里巴巴集团联合创建的WORFBENCH&#xff0c;一个用于评估大型语言模型&#xff08;LLMs&#xff09;生成工作流能力的基准测试。它包含了一系列的测试和评估协议&#xff0c;用于量化和分析LLMs在处理复杂任务时分解问题和规划执行步骤的能力。WORFBE…

微信小程序文本收起展开

这里写自定义目录标题 微信小程序文本收起展开常见问题的梯形背景框 微信小程序文本收起展开 参考 https://juejin.cn/post/6963904955262435336 <!-- 常见问题解答 --><view classcontentBottom><view classBottomFirst><text id0 data-id0 class&quo…

安装buildkit,并使用buildkit构建containerd镜像

背景 因为K8s抛弃Docker了,所以就只装了个containerd,这样就需要一个单独的镜像构建工具了,就用了buildkit,这也是Docker公司扶持的,他们公司的人出来搞的开源工具,官网在 https://github.com/moby/buildkit 简介 服务端为buildkitd,负责和runc或containerd后端连接干活,目前…

魔音音乐 5.0.1 | 界面优美,可无损下载,可播放

魔音Morin 是一款免费下载付费音乐和免费播放音乐的软件。现在听歌都需要付费&#xff0c;不想付费听音乐就来魔音Morin&#xff0c;完全免费的音乐资源非常丰富&#xff0c;可同步四大音乐平台歌单&#xff0c;还有各类音乐榜单&#xff0c;自带音乐社、同步歌单以及搜索音乐功…

iTOP-RK3568开发板独立NPU通过算法加特应用到以下的场景

iTOP-3568开发板采用瑞芯微RK3568处理器&#xff0c;内部集成了四核64位Cortex-A55处理器。主频高达2.0Ghz&#xff0c;RK809动态调频。集成了双核心架构GPU&#xff0c;ARM G52 2EE、支持OpenGLES1.1/2.0/3.2、OpenCL2.0、Vulkan1.1、内嵌高性能2D加速硬件。 内置独立NPU,算力…

国内大语言模型哪家更好用?

大家好&#xff0c;我是袁庭新。 过去一年&#xff0c;AI大语言模型在爆发式增长&#xff0c;呈现百家争鸣之态。国内外相关厂商积极布局&#xff0c;并相继推出自家研发的智能化产品。 我在工作中已习惯借助AI来辅助完成些编码、创作、文生图等任务&#xff0c;甚至对它们产…

基于Springboot在线视频网站的设计与实现

基于Springboot视频网站的设计与实现 开发语言&#xff1a;Java 框架&#xff1a;springboot JDK版本&#xff1a;JDK1.8 服务器&#xff1a;tomcat7 数据库&#xff1a;mysql 5.7 数据库工具&#xff1a;Navicat11 开发软件&#xff1a;idea 源码获取&#xff1a;https://do…

Android 开发 TabLayout 自定义指示器长度

前言 原生 TabLayout 的指示器长度是充满整个屏幕的&#xff0c;但在实际开发中 UI 会设计成 指示器的长度等于或者小于标题字体长度&#xff0c;如图 如果设置成跟字体长度一样即使用 API: mTabLayout.setTabIndicatorFullWidth(false);或者在 xml 布局文件中的TabLayout标签…

vscode配色主题推荐:Andromeda !

vscode配色主题推荐:Andromeda ! 图标库 vscode-icons ! Andromeda:Dark theme with a taste of the universe&#xff1b; 仙女座&#xff1a;一套宇宙深空体验的哑暗色主题; 高对比度,色彩饱和; Easy Installation Open the extensions sidebar on Visual Studio CodeSearc…

判断自己的mac是macOS x64 还是macOS ARM64

在终端输入 uname -a 这样的是x64 这样的是ARM64

Skydel 24.9版本震撼发布,升级五大关键功能

在信号传播与仿真领域&#xff0c;Skydel软件一直是行业内的佼佼者。我们与您分享升级快讯&#xff0c;Skydel软件24.9.0版本已正式发布&#xff0c;此次更新不仅带来了五大全新功能&#xff0c;还在性能优化、用户体验以及远程API方面进行了全面升级&#xff0c;为用户带来更高…