使用Hugging Face中的BERT进行标题分类

使用Hugging Face中的BERT进行标题分类

  • 前言
  • 相关介绍
      • 出处
      • 基本原理
      • 优点
      • 缺点
  • 前提条件
  • 实验环境
  • BERT进行标题分类
    • 准备数据集
    • 读取数据集
    • 划分数据集
    • 设置相关参数
    • 创建自己DataSet对象
    • 计算准确率
    • 定义预训练模型
    • 定义优化器
    • 训练模型
    • 保存模型
    • 测试模型
  • 参考文献

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

前言

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv10训练自己的数据集(交通标志检测)
  • YOLO11训练自己的数据集(吸烟、跌倒行为检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

相关介绍

BERT(Bidirectional Encoder Representations from Transformers)是Google在2018年提出的一种基于Transformer架构的预训练语言模型。

出处

BERT由Google AI研究院提出,《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》,旨在通过大规模无标注数据的预训练,学习丰富的语义表示,进而在各种自然语言处理(NLP)任务中进行微调,以取得优异的表现。BERT的提出标志着NLP领域的一个重要里程碑,刷新了多个NLP任务的记录。

  • 论文地址:https://arxiv.org/abs/1810.04805
  • 开源代码:https://paperswithcode.com/method/bert

基本原理

BERT的基本原理是基于Transformer架构的双向编码器,通过在大规模文本数据上的预训练来捕捉语言的深层双向表征。其训练过程分为两个阶段:预训练和微调。

  1. 预训练阶段

    • 任务:BERT的预训练任务主要包括两个,即遮蔽语言模型(Masked Language Model, MLM)和下一句预测(Next Sentence Prediction, NSP)。
      • MLM:类似于完形填空,模型被训练来预测输入句子中被遮蔽的词。这种任务促使模型学习上下文中的词汇关系。
      • NSP:判断两个句子是否是连续的文本序列。这有助于模型理解句子间的关联。
    • 模型结构:BERT模型由多层的Transformer编码器堆叠而成,每一层都包含自注意力机制(Self-Attention)和前馈神经网络。这种深层结构使得BERT能够捕捉从浅层语法特征到深层语义特征的不同级别的语言信息。
  2. 微调阶段

    • 在预训练完成后,BERT模型可以通过添加任务特定的输出层来进行微调,以适应不同的NLP任务,如情感分析、问答、命名实体识别等。
    • 微调过程利用了预训练阶段学到的语言表征,使得模型能够快速适应新的任务并取得优异的性能。

在这里插入图片描述

优点

  1. 上下文相关性:BERT采用双向Transformer编码器,可以有效地捕捉上下文之间的依赖关系,从而提高了NLP任务的准确性。这种双向编码的能力使得BERT在理解文本时能够更全面地考虑上下文信息。
  2. 预训练和微调:BERT通过在大规模无标注数据上进行预训练,学习到了通用的语言知识。这使得BERT可以在各种具体的NLP任务上进行微调,从而大大减少训练时间和数据需求。
  3. 多任务支持:BERT可以支持多种NLP任务,如文本分类、命名实体识别、问答系统、文本相似度计算等。这种多任务支持的能力使得BERT具有广泛的应用前景。
  4. 可迁移性:BERT具有很高的可迁移性,可以通过微调适应不同的NLP任务。这意味着在训练一个新的NLP任务时,可以利用BERT已经学到的通用语言知识,从而加速训练过程并提高性能。
  5. 处理速度和精度:BERT使用了Transformer结构,可以并行计算,速度较快。同时,BERT在处理各种NLP任务时都表现出了较高的精度。

缺点

  1. 计算资源需求高:BERT需要大量的计算资源和存储空间进行训练和部署。这使得在一些资源受限的环境下使用BERT变得困难。
  2. 训练数据需求大:BERT需要大量的训练数据才能发挥其优势。对于一些小型数据集,BERT的表现可能不如其他模型。这限制了BERT在一些特定领域的应用。
  3. 长文本处理效果有限:BERT对于长文本的处理效果不如一些传统模型(如CNN和RNN)。这可能是因为BERT采用的是固定长度的输入序列,对于过长的文本可能无法有效地捕捉全部信息。
  4. 微调成本:虽然BERT可以通过微调适应不同的NLP任务,但这需要一定的人工标注数据和时间成本。这增加了使用BERT的复杂性。
  5. 特定领域适应性:对于一些特定领域的文本,BERT可能需要进行特定的训练才能达到更好的效果。这限制了BERT在某些专业领域的应用。

综上所述,BERT作为一种基于Transformer架构的预训练语言模型,在自然语言处理领域具有广泛的应用前景和优势。然而,其计算资源需求高、训练数据需求大、长文本处理效果有限等缺点也需要注意。在实际应用中,需要根据具体任务和资源情况选择合适的模型和方法。

前提条件

  • 熟悉Python

实验环境

Package                       Version
----------------------------- ------------
matplotlib                    3.3.4
numpy                         1.19.5
Pillow                        8.4.0
pip                           21.2.2
protobuf                      3.19.6
requests                      2.27.1
scikit-learn                  0.24.2
scipy                         1.5.4
sentencepiece                 0.1.91
setuptools                    58.0.4
threadpoolctl                 3.1.0
thulac                        0.2.2
tokenizers                    0.9.3
torch                         1.9.1+cu111
torchaudio                    0.9.1
torchvision                   0.10.1+cu111
tornado                       6.1
tqdm                          4.64.1
traitlets                     4.3.3
transformers                  3.5.1
urllib3                       1.26.20

BERT进行标题分类

准备数据集

  • 本文数据集下载地址:https://download.csdn.net/download/FriendshipTang/89879428

在这里插入图片描述

  • academy_titles.txt:该文件是关于学术的标题数据。
  • job_titles.txt:该文件是关于招聘的标题数据。

读取数据集

# 定义两个list分别存放两个板块的帖子数据
academy_titles = []
job_titles = []
with open('academy_titles.txt', encoding='utf8') as f:for l in f:  # 按行读取文件academy_titles.append(l.strip())  # strip 方法用于去掉行尾空格
with open('job_titles.txt', encoding='utf8') as f:for l in f:  # 按行读取文件job_titles.append(l.strip())  # strip 方法用于去掉行尾空格data_list = []
for title in academy_titles:data_list.append([title, 0])for title in job_titles:data_list.append([title, 1])max_length = 0
for case in data_list:max_length = max(max_length, len(case[0])+2)
print(max_length)

划分数据集

from sklearn.model_selection import train_test_split
train_list, dev_list = train_test_split(data_list,test_size=0.3,random_state=15,shuffle=True)

设置相关参数

import os
import time
import random
import torch
import torch.nn.functional as F
from torch import nn
from tqdm import tqdm
import randomfrom transformers import get_linear_schedule_with_warmup, AdamW
# from transformers import BertTokenizer, BertForSequenceClassification
from transformers import BertTokenizer, BertForSequenceClassification, BertConfig, BertModelif torch.cuda.is_available():device = torch.device("cuda")
else:device = torch.device("cpu")
max_train_epochs = 10
warmup_proportion = 0.05
gradient_accumulation_steps = 2
train_batch_size = 16
valid_batch_size = train_batch_size
test_batch_size = train_batch_size
# data_workers= 2
data_workers= 0learning_rate=1e-6
weight_decay=0.01
max_grad_norm=1.0
cur_time = time.strftime("%Y-%m-%d_%H:%M:%S")

这些参数通常用于配置深度学习模型的训练过程,特别是在使用PyTorch这样的深度学习框架时。下面是对每个参数的解释:

  1. batch_size = 128:

    • 批大小(Batch Size)是指在模型训练过程中,一次迭代(iteration)所使用的数据样本数量。这里设置为128,意味着每次更新模型参数前,会使用128个样本来计算损失和梯度。较大的批大小可以加速训练,但也可能增加内存消耗并影响模型的泛化能力。
  2. data_workers = 0:

    • 数据加载工作线程数(Data Workers)是指用于并行加载数据的线程数量。设置为0意味着数据加载将在主线程上同步进行,这可能会降低数据加载的速度。通常,增加工作线程数可以加速数据加载过程,但过多的线程可能会增加系统开销。
  3. learning_rate = 0.0001:

    • 学习率(Learning Rate)是控制模型参数更新幅度的超参数。较小的学习率意味着参数更新的步长较小,训练过程可能更稳定但收敛速度较慢;较大的学习率可能导致训练过程不稳定甚至发散。这里设置为0.0001是一个相对较小的值,适用于一些精细调整的场景。
  4. gradient_accumulation_steps = 1:

    • 梯度累积步数(Gradient Accumulation Steps)是指在更新模型参数前,累积梯量的次数。设置为1意味着每次迭代都会立即更新模型参数。在内存有限但希望使用较大批大小进行训练时,可以通过增加梯度累积步数来模拟较大的批大小。
  5. max_train_epochs = 30:

    • 最大训练轮数(Max Training Epochs)是指整个训练数据集被遍历的次数。一个epoch等于整个数据集通过模型一次。这里设置为30,意味着整个数据集将被遍历30次。
  6. warmup_proportion = 0.05:

    • 预热比例(Warmup Proportion)是指在训练初期,学习率逐渐增加所占整个训练过程的比例。预热可以帮助模型在训练初期更稳定地更新参数,避免由于初始学习率过高而导致的训练不稳定。这里设置为0.05,意味着在前5%的训练轮数中,学习率会逐渐增加。
  7. weight_decay = 0.01:

    • 权重衰减(Weight Decay)是一种正则化技术,用于防止模型过拟合。它通过向损失函数添加一个与模型参数平方成正比的项来实现,鼓励模型参数保持较小值。这里设置为0.01。
  8. max_grad_norm = 1.0:

    • 最大梯度范数(Max Grad Norm)是梯度裁剪(Gradient Clipping)的一种形式,用于控制梯度的最大值。如果梯度的范数超过这个值,梯度将被缩放以确保其范数不超过这个值。这有助于防止梯度爆炸问题。这里设置为1.0。
  9. cur_time = time.strftime(“%Y-%m-%d_%H:%M:%S”):

    • 这行代码用于获取当前时间,并将其格式化为字符串,通常用于生成具有时间戳的文件名或日志,以便记录训练过程。
  10. device = torch.device(‘cuda’):

    • 这行代码指定了模型和数据应该在哪种设备上运行。'cuda'表示使用NVIDIA的CUDA技术来加速计算,通常是在具有NVIDIA GPU的计算机上。如果系统中没有可用的CUDA设备,PyTorch将回退到CPU。

这些参数共同决定了模型训练的具体配置,包括训练速度、模型性能以及训练过程中的稳定性等。

创建自己DataSet对象

# tokenizer = BertTokenizer.from_pretrained('bert-base-chinese') # 在线读取,可能会报网络错误
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese/') # 注意此处为本地文件夹
class MyDataSet(torch.utils.data.Dataset):def __init__(self, examples):self.examples = examplesdef __len__(self):return len(self.examples)def __getitem__(self, index):example = self.examples[index]title = example[0]label = example[1]r = tokenizer.encode_plus(title, max_length=max_length, padding="max_length")return title, label, index#, r['token_type_ids'], label, indexdef the_collate_fn(batch):r = tokenizer([b[0] for b in batch], padding=True)input_ids = torch.LongTensor(r['input_ids'])attention_mask = torch.LongTensor(r['attention_mask'])label = torch.LongTensor([b[1] for b in batch])indexs = [b[2] for b in batch]return input_ids, attention_mask, label, indexs #, token_type_idstrain_dataset = MyDataSet(train_list)
train_data_loader = torch.utils.data.DataLoader(train_dataset,batch_size=train_batch_size,shuffle = True,num_workers=data_workers,collate_fn=the_collate_fn,
)dev_dataset = MyDataSet(dev_list)
dev_data_loader = torch.utils.data.DataLoader(dev_dataset,batch_size=train_batch_size,shuffle = False,num_workers=data_workers,collate_fn=the_collate_fn,
)

计算准确率

def get_score():y_true = []y_pred = []for step, batch in enumerate(tqdm(dev_data_loader)):model.eval()with torch.no_grad():input_ids, attention_mask = (b.to(device) for b in batch[:2])y_true += batch[2].numpy().tolist()logist = model(input_ids, attention_mask)[0]result = torch.argmax(logist, 1).cpu().numpy().tolist()y_pred += resultcorrect = 0for i in range(len(y_true)):if y_true[i] == y_pred[i]:correct += 1accuracy = correct / len(y_pred)return accuracy

定义预训练模型

# model = BertForSequenceClassification.from_pretrained('bert-base-chinese') # 在线读取预训练模型
# 本地读取预训练模型
config = BertConfig.from_json_file("bert-base-chinese/config.json")
model = BertForSequenceClassification.from_pretrained("bert-base-chinese/pytorch_model.bin", config=config)model.to(device)

定义优化器

from transformers import AdamW, get_linear_schedule_with_warmupt_total = len(train_data_loader) // gradient_accumulation_steps * max_train_epochs + 1
num_warmup_steps = int(warmup_proportion * t_total)
print('warmup steps : %d' % num_warmup_steps)
no_decay = ['bias', 'LayerNorm.weight'] # no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
param_optimizer = list(model.named_parameters())
optimizer_grouped_parameters = [{'params':[p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],'weight_decay': weight_decay},{'params':[p for n, p in param_optimizer if any(nd in n for nd in no_decay)],'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters, lr=learning_rate, correct_bias=False)
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=t_total)

训练模型

def print_test(title):r = tokenizer([title])input_ids = torch.LongTensor(r['input_ids']).to(device)attention_mask = torch.LongTensor(r['attention_mask']).to(device)logist = model(input_ids, attention_mask)[0]result = torch.argmax(logist, 1).cpu().numpy().tolist()[0]result = ['考研考博', '招聘信息'][result]print(title, result)
def print_cases():print_test('考研心得')print_test('北大实验室博士')print_test('考外校博士')print_test('北大实验室招博士')print_test('工作or考研?')print_test('急求自然语言处理工程师')print_test('校招offer比较')for epoch in range(max_train_epochs):b_time = time.time()model.train()for step, batch in enumerate(tqdm(train_data_loader)):input_ids, attention_mask, label = (b.to(device) for b in batch[:-1])loss = model(input_ids, attention_mask, labels=label)loss = loss[0]loss.backward()if (step + 1) % gradient_accumulation_steps == 0:optimizer.step()scheduler.step() optimizer.zero_grad()print('Epoch = %d Epoch Mean Loss %.4f Time %.2f min' % (epoch+1, loss.item(), (time.time() - b_time)/60))print(get_score())print_cases()
0.9896858884200657
考研心得 考研考博
北大实验室博士 考研考博
考外校博士 考研考博
北大实验室招博士 招聘信息
工作or考研? 考研考博
急求自然语言处理工程师 招聘信息
校招offer比较 招聘信息
100%|██████████| 311/311 [00:20<00:00, 14.83it/s]
Epoch = 2 Epoch Mean Loss 0.0172 Time 0.35 min
100%|██████████| 134/134 [00:02<00:00, 55.21it/s]
0.9967182372245663
考研心得 考研考博
北大实验室博士 考研考博
考外校博士 考研考博
北大实验室招博士 招聘信息
工作or考研? 考研考博
急求自然语言处理工程师 招聘信息
校招offer比较 招聘信息
100%|██████████| 311/311 [00:19<00:00, 15.56it/s]
Epoch = 3 Epoch Mean Loss 0.0123 Time 0.33 min
100%|██████████| 134/134 [00:04<00:00, 31.16it/s]
0.9995311767463666
考研心得 考研考博
北大实验室博士 考研考博
考外校博士 考研考博
北大实验室招博士 招聘信息
工作or考研? 考研考博
急求自然语言处理工程师 招聘信息
校招offer比较 招聘信息
100%|██████████| 311/311 [00:22<00:00, 14.12it/s]
Epoch = 4 Epoch Mean Loss 0.0053 Time 0.37 min
100%|██████████| 134/134 [00:04<00:00, 31.56it/s]
0.9995311767463666
考研心得 考研考博
北大实验室博士 考研考博
考外校博士 考研考博
北大实验室招博士 招聘信息
工作or考研? 考研考博
急求自然语言处理工程师 招聘信息
校招offer比较 招聘信息
100%|██████████| 311/311 [00:21<00:00, 14.58it/s]
Epoch = 5 Epoch Mean Loss 0.0052 Time 0.36 min
100%|██████████| 134/134 [00:03<00:00, 33.80it/s]
0.9995311767463666
考研心得 考研考博
北大实验室博士 考研考博
考外校博士 考研考博
北大实验室招博士 招聘信息
工作or考研? 考研考博
急求自然语言处理工程师 招聘信息
校招offer比较 招聘信息
100%|██████████| 311/311 [00:20<00:00, 14.85it/s]
Epoch = 6 Epoch Mean Loss 0.0030 Time 0.35 min
100%|██████████| 134/134 [00:04<00:00, 33.33it/s]
0.9995311767463666
考研心得 考研考博
北大实验室博士 考研考博
考外校博士 考研考博
北大实验室招博士 招聘信息
工作or考研? 考研考博
急求自然语言处理工程师 招聘信息
校招offer比较 招聘信息
100%|██████████| 311/311 [00:21<00:00, 14.79it/s]
Epoch = 7 Epoch Mean Loss 0.0022 Time 0.35 min
100%|██████████| 134/134 [00:04<00:00, 32.78it/s]
0.9995311767463666
考研心得 考研考博
北大实验室博士 考研考博
考外校博士 考研考博
北大实验室招博士 招聘信息
工作or考研? 考研考博
急求自然语言处理工程师 招聘信息
校招offer比较 招聘信息
100%|██████████| 311/311 [00:21<00:00, 14.65it/s]
Epoch = 8 Epoch Mean Loss 0.0053 Time 0.35 min
100%|██████████| 134/134 [00:04<00:00, 33.41it/s]
0.9995311767463666
考研心得 考研考博
北大实验室博士 考研考博
考外校博士 考研考博
北大实验室招博士 招聘信息
工作or考研? 考研考博
急求自然语言处理工程师 招聘信息
校招offer比较 招聘信息
100%|██████████| 311/311 [00:21<00:00, 14.64it/s]
Epoch = 9 Epoch Mean Loss 0.0052 Time 0.35 min
100%|██████████| 134/134 [00:03<00:00, 33.91it/s]
0.9995311767463666
考研心得 考研考博
北大实验室博士 考研考博
考外校博士 考研考博
北大实验室招博士 招聘信息
工作or考研? 考研考博
急求自然语言处理工程师 招聘信息
校招offer比较 招聘信息
100%|██████████| 311/311 [00:20<00:00, 14.84it/s]
Epoch = 10 Epoch Mean Loss 0.0021 Time 0.35 min
100%|██████████| 134/134 [00:04<00:00, 32.88it/s]0.9995311767463666
考研心得 考研考博
北大实验室博士 考研考博
考外校博士 考研考博
北大实验室招博士 招聘信息
工作or考研? 考研考博
急求自然语言处理工程师 招聘信息
校招offer比较 招聘信息

保存模型

torch.save(model.state_dict(), 'bert_model_parameter.pkl')
torch.save(model, 'bert_model.pkl')

测试模型

model = torch.load('bert_model.pkl')
model.load_state_dict(torch.load('bert_model_parameter.pkl'))print_cases()
考研心得 考研考博
北大实验室博士 考研考博
考外校博士 考研考博
北大实验室招博士 招聘信息
工作or考研? 考研考博
急求自然语言处理工程师 招聘信息
校招offer比较 招聘信息

参考文献

[1] 论文地址:https://arxiv.org/abs/1810.04805
[2] 开源代码:https://paperswithcode.com/method/bert
[3] https://huggingface.co/docs/transformers/model_doc/bert

  • 由于本人水平有限,难免出现错漏,敬请批评改正。
  • 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
  • 基于DETR的人脸伪装检测
  • YOLOv7训练自己的数据集(口罩检测)
  • YOLOv8训练自己的数据集(足球检测)
  • YOLOv10训练自己的数据集(交通标志检测)
  • YOLO11训练自己的数据集(吸烟、跌倒行为检测)
  • YOLOv5:TensorRT加速YOLOv5模型推理
  • YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
  • 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
  • YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
  • YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
  • Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
  • YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
  • 使用Kaggle GPU资源免费体验Stable Diffusion开源项目

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/56245.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

动态规划-简单多状态dp问题——面试题17.16.按摩师

多状态问题的核心就是每个位置不止有一个状态&#xff0c;因此需要多个dp表表示不同状态对应位置的值&#xff0c;然后根据题目考虑特定情况写出状态转移方程即可 1.题目解析 题目来源&#xff1a;面试题17.16.按摩师——力扣 测试用例 2.算法原理 1.状态表示 这里与路径问…

【CSS in Depth 2 精译_047】7.2 CSS 响应式设计中的媒体查询原则(上):深入理解媒体查询的类型

当前内容所在位置&#xff08;可进入专栏查看其他译好的章节内容&#xff09; 【第七章 响应式设计】&#xff08;概述&#xff09; 7.1 移动端优先设计原则&#xff08;上篇&#xff09; 7.1.1 创建移动端菜单&#xff08;下篇&#xff09;7.1.2 给视口添加 meta 标签&#xf…

MATLAB - 机器人机械臂设计轨迹规划器

系列文章目录 前言 本示例介绍了一种设计抓取和轨迹规划器的方法,该规划器可用于垃圾箱拣选系统。 在机器人技术中,垃圾箱拣选包括使用机械手从垃圾箱中取出物品。智能垃圾箱拣选是这一过程的高级版本,具有更强的自主性。使用摄像系统感知部件,规划器生成与场景相适应的无碰…

NASA:ARCTAS 区域的二级 FIRSTLOOK 气溶胶产品子集。 它包含气溶胶光学深度和粒子类型,以及相关的大气数据

目录 简介 信息 代码 引用 网址推荐 知识星球 机器学习 MISR L2 FIRSTLOOK Aerosol Product subset for the ARCTAS region V001 简介 这是 ARCTAS 区域的二级 FIRSTLOOK 气溶胶产品子集。 它包含气溶胶光学深度和粒子类型&#xff0c;以及相关的大气数据&#xff0c;…

关于摩托车一键启动无钥匙进入、智能科技创新

摩托车一键启动无钥匙进入功能 一、工作原理 摩托车的一键启动无钥匙进入功能采用了世界最先进的RFID无线射频技术和最先进的车辆身份编码识别系统&#xff0c;率先应用小型化、小功率射频天线的开发方案&#xff0c;并成功融合了遥控系统和无钥匙系统&#xff0c;沿用了传统…

在 MTT GPU 上使用 llama.cpp 推理

大语言模型因其出色的自然语言理解和生成能力而迅速被广泛使用&#xff0c;llama.cpp 大幅降低了进行大语言模型推理的门槛&#xff0c;MTT GPU 同样也是 llama.cpp 支持的运行平台&#xff0c;能够充分利用硬件的性能来助力用户的大语言模型应用。 本文主要介绍了如何在摩尔线…

出处不详 取数游戏

目录 取数游戏题目描述背景输入输出数据范围 题解解法优化 打赏 取数游戏 题目描述 背景 两人将 n n n个正整数围成一个圆环&#xff0c;规则如下&#xff1a; 第一名玩家随意选取数字&#xff1b;第二名玩家从与第一名玩家相邻的两个数字中选择一个&#xff1b;而后依次在…

用Arduino单片机制作一个简单的音乐播放器

Arduino单片机上有多个数字IO针脚&#xff0c;可以输出数字信号&#xff0c;用于驱动发声器件&#xff0c;从而让它发出想要的声音。蜂鸣器是一种常见的发声器件&#xff0c;通电后可以发出声音。因此&#xff0c;单片机可以通过数字输出控制蜂鸣器发出指定的声音。另外&#x…

【尚硅谷】FreeRTOS学笔记(更新中更新时间2024.10.12)

在网上看到的一段很形象的描述&#xff0c;放在这里给大家娱乐一下。 裸机开发&#xff1a;n个人拉屎&#xff0c;先进去一个拉完&#xff0c;下一个再来。看门狗&#xff1a;如果有人拉完屎还占着&#xff0c;茅坑刷视频&#xff0c;把他拖出去中断系统&#xff1a;n个人拉屎&…

Python | Leetcode Python题解之第477题汉明距离总和

题目&#xff1a; 题解&#xff1a; class Solution:def totalHammingDistance(self, nums: List[int]) -> int:n len(nums)ans 0for i in range(30):c sum(((val >> i) & 1) for val in nums)ans c * (n - c)return ans

数通--3

一、动态路由 内部 路由器之间要互联互通&#xff0c;必须遵循相同的协议 企业内部用 IGP&#xff0c;企业之间用BGP RIP&#xff08;已淘汰&#xff0c;不考&#xff09; 距离就是长短&#xff0c;矢量就是方向&#xff0c;即路由的出接口 一台路由器 A 配好RIP&#xff0c;…

C++面试速通宝典——25

473. HTTP如何减少重定向请求 重定向请求&#xff1a; ‌‌‌‌  服务器上的一个资源可能由于迁移、维护等原因从url1移至url2后&#xff0c;而客户端不知情&#xff0c;他还是继续请求url1&#xff0c;这时服务器不能粗暴地返回错误&#xff0c;而是通过302响应码和Locati…

鸿蒙--商品列表

这里主要利用的是 List 组件 相关概念 Scroll:可滚动的容器组件,当子组件的布局尺寸超过父组件的视口时,内容可以滚动。List:列表包

Appium Device Farm安装教程

环境要求&#xff1a;Appium version ≥ 2.4.X 安装appium npm install -g appium2.11.3 如果安装提示如下问题 npm error code EEXIST npm error syscall rename npm error path /Users/wan/.npm/_cacache/tmp/d5787519 npm error dest /Users/wan/.npm/_cacache/content-…

鸿蒙--WaterFlow 实现商城首页

目录结构 ├──entry/src/main/ets // 代码区 │ ├──common │ │ ├──constants │ │ │ └──CommonConstants.ets // 公共常量类 │ │ └──utils │ │ └──Logger.ets // 日志打印类 │ ├──entryability │ │ └──EntryAbility.ets // 程序入口…

【2024最新】基于springboot+vue的体质数据分析及可视化lw+ppt

作者&#xff1a;计算机搬砖家 开发技术&#xff1a;SpringBoot、php、Python、小程序、SSM、Vue、MySQL、JSP、ElementUI等&#xff0c;“文末源码”。 专栏推荐&#xff1a;SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏&#xff1a;Java精选实战项…

MPA-SVM多变量回归预测|海洋捕食者优化算法-支持向量机|Matalb

目录 一、程序及算法内容介绍&#xff1a; 基本内容&#xff1a; 亮点与优势&#xff1a; 二、实际运行效果&#xff1a; 三、算法介绍&#xff1a; 四、完整程序下载&#xff1a; 一、程序及算法内容介绍&#xff1a; 基本内容&#xff1a; 本代码基于Matlab平台编译&am…

数据结构-5.6.二叉树的先,中,后序遍历

一.遍历&#xff1a; 二.二叉树的遍历&#xff1a;利用了递归操作 1.简介&#xff1a; 二叉树的先序遍历&#xff0c;中序遍历&#xff0c;后序遍历都是以根结点遍历顺序为准的&#xff0c;如先序遍历就先遍历根结点 2.实例&#xff1a; 例一&#xff1a; 例二&#xff1a; …

Rust 与生成式 AI:从语言选择到开发工具的演进

在现代软件开发领域&#xff0c;Rust 语言正在逐步崭露头角&#xff0c;尤其是在高性能和可靠性要求较高的应用场景。与此同时&#xff0c;生成式 AI 的崛起正在重新塑造开发者的工作方式&#xff0c;从代码生成到智能调试&#xff0c;生成式 AI 的应用正成为提升开发效率和质量…

爬虫设计思考之二

“所谓爬虫,其本质是一种计算机程序,它的行为看起来就像是蜘蛛在网上面爬行一样,顺着互联网这个“网”,一条线一条线地“爬行”。 一、认识爬虫 爬虫这个词对于非专业人士比较的陌生&#xff0c;但是实际却和我们的生活息息相关。例如我们国内经常使用的百度浏览器搜索&#x…