Acwing 贪心算法遗留

1.Huffman树

Acwing 148.合并果子
在这里插入图片描述
实现思路:构建一颗哈夫曼树,求最短带权路径长度(树中所有的叶结点的权值乘上其到根结点的路径长度)

  • 每次选择重量最小的两堆进行合并
  • 使用小根堆存储每一堆果子,每次两次弹出堆顶元素,合并后就放入小根堆中

具体实现代码(详解版):

#include <iostream>
#include <algorithm>
#include <queue>
#include <vector>using namespace std;int main() {int n;cin >> n;  // 输入元素数量// 使用最小堆来保存元素priority_queue<int, vector<int>, greater<int>> heap;// 读取 n 个整数并将其压入最小堆for (int i = 0; i < n; ++i) {int x;cin >> x;heap.push(x);}int res = 0;  // 保存合并的总代价// 每次取出两个最小的元素,直到堆中只剩下一个元素while (heap.size() > 1) {int a = heap.top(); heap.pop();  // 取出堆中最小的元素int b = heap.top(); heap.pop();  // 取出堆中第二小的元素res += a + b;  // 计算这次合并的代价,并累加到总代价heap.push(a + b);  // 将合并后的元素重新压入堆中}cout << res << endl;  // 输出最终的总代价return 0;
}

2. 排序不等式

Acwing 913.排队打水
在这里插入图片描述
实现思路:
假设各个同学的打水时间为:3 6 1 4 2 5 7 并且就按照这个顺序来打水。 当第一个同学打的时候,后面所有同学都要等他,所以等待的总时长要加上一个3 * 6,第二个同学打的时候,后面所有同学也都要等他,所以要加上个6 * 5,以此类推,所有同学等待的总时长为3 * 6 + 6 * 5 + 1 * 4 + 4 * 3 + 2 * 2 + 5 * 1

假设各个同学打水花费的时长为 t1,t2,t3,…,tn,则按照次序打水,总的等待时长为:t1 * (n-1) + t2 * (n-2) + ... + tn * 1

可以看出,当打水顺序按照花费时间从小到大排序时,所得的等待时间最小

采用反证法(调整法),假设最优解不是按照从小到大的顺序,则必然存在2个相邻的人,前一个人打水时长比后一个大,即必然存在一个位置i,满足t_i > t_i+1,那我们尝试把这两个同学的位置交换,看看对总的等待时长有什么影响,这两个同学的交换,只会影响他们两的等待时长,不会影响其他同学的等待时长。 交换前,这部分等待时长为t_i * (n-i) + t_i+1 * (n-i-1),交换后,这部分等待时长为t_i+1 * (n-i) + t_i * (n-i-1),容易算得,交换后的等待时长变小了,则该方案不是最优解,矛盾了。则最优解就是按照从小到大的顺序依次打水。

具体实现代码:

#include <iostream>
#include <algorithm>using namespace std;const int N = 100010;
typedef long long LL;
int n,t[N];int main(){cin >> n;for(int i = 0 ; i < n ; i ++) cin >> t[i];sort(t,t + n);LL res = 0;for(int i = 0 ; i < n ; i ++) res += t[i] * (n - i - 1);cout << res << endl;return 0;
}

3.绝对值不等式

Acwing 104.货舱选址
在这里插入图片描述
思路分析:
假设n个商店在数轴上的坐标依次为:x1x2x3,…,xn

设仓库的位置为x,则总的距离为

f(x) = |x1 - x| + |x2 - x| + ... + |xn - x|

我们要求解的就是f(x)的最小值。

我们可以先进行一下分组,1n为一组,2n-1为一组…

f(x) = (|x1 - x| + |xn - x|) + (|x2 - x| + |x_n-1 - x|) + ....

单独看一组,任意一组都可以写成形如|a - x| + |b - x|的形式,ab是已知的常数,x是未知数。假设a < b,则容易知道,当x取值在[a,b]这个区间内时,上面的表达式取得最小值b - a,而x取值只要落在[a,b]区间外,则上面的表达式的值一定是大于b - a的。

由此可知,对于分组1n,只要x取值在[x1,xn]这个区间内,就能使|x1 - x| + |xn - x|取得最小值xn - x1。同理,对于|x2 - x| + |x_n-1 - x|,只要x取值在[x2,x_n-1]区间内,就能使这个部分取得最小值x_n-1 - x2…容易得出,只要取所有分组的区间的交集即整个区间的中间点,能使总的f(x)最小。即,当n为偶数时,x只要落在最中间2个点之间即可;当n为奇数时,x只需要落在最中间的那个点上即可。

具体实现代码:

#include <iostream>
#include <algorithm>using namespace std;const int N = 1000010;int p[N];
int n;int main(){int n;cin >> n;for(int i = 0 ; i < n ; i ++) cin >> p[i];sort(p,p + n);int res = 0;for(int i = 0 ; i < n ; i ++) res += abs(p[i] - p[n / 2]);cout << res << endl;return 0;
}

4.推公式

Acwing 125.耍杂技的牛
在这里插入图片描述
实现思路:wi表示牛的体重,si表示牛的强壮度
先给结论:按照w + s从小到大的顺序,从上往下排,最大的危险系数一定是最小的。

简单理解:把重量轻的牛放下面是很亏的,同样把不强壮的牛放下面也是亏的,所以就尽可能把又重又强壮的牛放下面

就不证明了。

#include <iostream>
#include <algorithm>using namespace std;typedef pair<int,int> PII;//存储牛的体重+强健度,体重
const int N = 50010;PII cow[N];
int n;int main(){cin >> n;for(int i = 0 ; i < n ; i ++){int w,s;cin >> w >> s;cow[i] = {w + s,w};}sort(cow ,cow + n);//自动先按体重+强健度排序int sum = 0,res = -2e9;for(int i = 0 ; i < n ; i ++){int w = cow[i].second,s = cow[i].first - w;//s为强健度res = max(res,sum - s);sum += w;}cout << res << endl;
}

总结:贪心算法(Greedy Algorithm)是一类在每一步选择中都采取当前最优策略,以期最终获得全局最优解的算法。贪心算法非常适用于解决局部最优能够导出全局最优的场景。在实际应用中,贪心算法通常比动态规划和回溯算法更为简单高效,但它并不总是能保证找到最优解。因此,贪心算法的应用需要证明其贪心策略是正确的,确保每一步的局部最优解能够累积成为全局最优解。

完结撒花~多复习

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/55955.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【测试】用例篇——测试用例的概念

设计测试用例基本是测试面试的必考题。 什么是测试用例&#xff1f; 测试用例&#xff08;Test Case&#xff09;是为了实施测试而向被测试的系统提供的⼀组集合&#xff0c;这组集合包含&#xff1a;测试环境、操作步骤、测试数据、预期结果等要素。 现在买回来一个新的电视…

uniapp页面传值

传变量 uni.navigateTo({url:/pages/page/pay?number1 })uni.navigateTo({url:/pages/page/pay?title this.title });uni.navigateTo({url:/pages/page/pay?list encodeURIComponent(JSON.stringify(this.getList)) })接收 onLoad(e){this.number e.numberthis.title e.…

探索CI/CD:持续集成与持续部署的基本概念

在现代软件开发中&#xff0c;持续集成&#xff08;CI&#xff09;和持续部署&#xff08;CD&#xff09;已经成为提高开发效率和产品质量的关键实践。本文将详细介绍CI/CD的基本概念、优势以及如何在实际项目中实施CI/CD。 一、什么是持续集成&#xff08;CI&#xff09;&…

2025年人工智能行业的发展趋势预测以及中小企业的应对策略

大家好&#xff0c;我是Shelly&#xff0c;一个专注于输出AI工具和科技前沿内容的AI应用教练&#xff0c;体验过300款以上的AI应用工具。关注科技及大模型领域对社会的影响10年。关注我一起驾驭AI工具&#xff0c;拥抱AI时代的到来。 ​ 进入2024年的第四季度&#xff0c;人工…

云原生化 - 旅程(简约版)

软件是一种以工程实践为基础的学科&#xff0c;这里建议先用起来&#xff0c;再了解相关的一些概念。 实践 1. 选择合适的技术栈 编程语言&#xff1a;选择支持并发和高性能的语言&#xff0c;如Golang或Java。框架&#xff1a;选择支持微服务的框架&#xff0c;如Spring Boot…

【玩转 JS 函数式编程_010】3.2 JS 函数式编程筑基之:以函数式编程的方式活用函数(上)

写在前面 按照惯例&#xff0c;过长的篇幅分开介绍&#xff0c;本篇为 JavaScript 函数式编程核心基础的第二部分——以函数式编程的方式活用函数的上篇&#xff0c;分别介绍了 JS 函数在排序、回调、Promise 期约、以及连续传递等应用场景下的用法演示。和之前章节相比难度又有…

【Linux 从基础到进阶】大数据集群的监控与管理

大数据集群的监控与管理 1. 引言 随着大数据技术的发展,越来越多的企业和组织部署了大数据集群以支持其业务需求。大数据集群通常包括数百甚至数千台服务器,分布式存储和计算框架如 Hadoop、Spark、Kafka 等被广泛应用。这种大规模的集群对性能、可靠性和可用性提出了极高的…

请解释一下Java中的泛型擦除。你对Java中的XML和JSON了解多少?

请解释一下Java中的泛型擦除。 Java中的泛型擦除&#xff08;Type Erasure&#xff09;是指Java编译器在编译泛型代码时&#xff0c;会移除泛型类型参数的相关信息&#xff0c;使得生成的字节码中不包含泛型类型信息。这个过程使得Java的泛型在运行时&#xff08;Runtime&…

详细分析Spring Framework中 @ConditionalOnProperty的基本知识(附Demo)

目录 前言1. 基本知识2. Demo 前言 基本的Java知识推荐阅读&#xff1a; java框架 零基础从入门到精通的学习路线 附开源项目面经等&#xff08;超全&#xff09;【Java项目】实战CRUD的功能整理&#xff08;持续更新&#xff09; 从实战中学习启发 1. 基本知识 Conditiona…

C++:thread | condition_variable|mutex

欢迎来到 破晓的历程的 博客 ⛺️不负时光&#xff0c;不负己✈️ 文章目录 引言thread创建线程传递参数给线程函数 mutexmutex常见用法 condition_variable&#xff1a;条件变量生产消费模型 引言 相信大家在Linux系统编程中都接触过线程创建和退出的相关系统调用&#xff0…

【学习笔记】一种使用多项式快速计算 sin 和 cos 近似值的方法

一种使用多项式快速计算 sin 和 cos 近似值的方法 在嵌入式开发、游戏开发或其他需要快速数学计算的领域&#xff0c;sin 和 cos 函数的计算时间可能会影响程序的整体性能。特别是在对时间敏感、精度要求不高的场景中&#xff0c;传统的 sin 和 cos 函数由于依赖复杂的数值方法…

RHCSA的学习(4)

一、vi编辑器 &#xff08;1&#xff09;为什么学vi&#xff1f; 所有的Unix Like 系统都会内建 vi 文本编辑器&#xff0c;其他的文本编辑器则不一定会存在&#xff1b; 很多个别软件的编辑接口都会主动呼叫 vi (例如未来会谈到的 crontab, visudo, edquota 等指令)&#x…

【笔记】Day2.4表设计说明

主键ID一般使用bigint类型 运送类型 使用比int更小的tinyint类型 eg&#xff1a;普快代表1 特快代表2&#xff08;没写反&#xff09; 关联城市 varchar 2代表京津冀 3代表江浙沪 4代表川渝 首重和续重都有小数点 故使用double 轻抛系数都为整数 故使用int 创建时间和修改…

【UI】将 naive ui 的 message 封装进axios 中,关于naiveui的message相关的用法

文章目录 前言在setup外进行使用直接包裹使用vue 单文件中使用 参考文章&#xff1a; 关于naiveui的message相关的用法 前言 最近新建了一个vite vu3 的项目&#xff0c;完全是从0 到1 &#xff0c;封装到request 的时候 想对axios 请求做一个全局的处理&#xff0c;但发现…

【CSS】让元素消失的方式

1. display: none display: none 是最常用的隐藏元素的方法。它会完全将元素从文档流中移除&#xff0c;元素不再占据任何空间。 .element {display: none; }特点&#xff1a; 占位影响&#xff1a;元素完全从文档流中移除&#xff0c;不占据任何空间。事件响应&#xff1a;…

jmeter学习(7)beanshell

beanshell preprocessor 发送请求前执行 beanshell postprocessor 发送请求前执行 获取请求相关信息 String body sampler.getArguments().getArgument(0).getValue(); String url sampler.getPath(); 获取响应报文 String responseprev.getResponseDataAsString(); 获…

实战OpenCV之视频处理

基础入门 视频是由一系列连续的图像帧组成的&#xff0c;这些帧按照一定的速率连续播放&#xff0c;从而形成动态画面。与视频相关的主要参数有&#xff1a;分辨率、帧率、码率、编解码器、帧类型、文件格式等&#xff0c;下面分别进行介绍。 1、帧率。表示每秒显示的图像帧数&…

【devops】x-ui 实现一键安装 x-ray 打造高速国际冲浪 | xray管理平台

一、部署X-UI篇 1、Github 地址&说明 github地址如下&#xff1a; https://github.com/FranzKafkaYu/x-ui?tabreadme-ov-file 2、一键部署 2.1、更新并安装curl #Ubuntu、Deibian系统 apt update && apt upgrade -y apt install curl -y #CentOS7 系统 yum…

强大的JVM监控工具

介绍 在生产环境中&#xff0c;经常会遇到各种各样奇葩的性能问题&#xff0c;所以掌握最基本的JVM命令行监控工具还是很有必要的 名称主要作用jps查看正在运行的Java进程jstack打印线程快照jmap导出堆内存映像文件jstat查看jvm统计信息jinfo实时查看和修改jvm配置参数jhat用…

现代身份和访问管理 IAM 如何降低风险

您的公司是否仍在使用 1998 年时的身份管理系统&#xff1f;仅凭用户名和密码就能登录本地网络并访问几乎所有资源吗&#xff1f; 虽然大多数企业已经转向现代身份和访问管理(IAM) 平台&#xff0c;但成千上万的企业和其他组织仍然依赖过时的用户名/密码系统。 如果你看一下传…