【预备理论知识——2】深度学习:线性代数概述

简单地说,机器学习就是做出预测。

线性代数

  • 线性代数是数学的一个分支,主要研究向量空间、线性方程组、矩阵理论、线性变换、特征值和特征向量、内积空间等概念。它是现代数学的基础之一,并且在物理学、工程学、计算机科学、经济学等领域有着广泛的应用。

标量

  • 标量(Scalar)是数学和物理学中的一个基本概念,它是一种只有一个数值大小,而没有方向的量。与之相对的是向量,向量既有大小也有方向。

  • 标量的一些特点:

    1. 数值表示:标量通常用单个数值表示,如温度、质量、时间等。

    2. 运算简单:标量之间的运算(加法、减法、乘法、除法)遵循基本的算术规则。

    3. 无需基底:标量不需要基底向量来表示,它们自身就是最基本的量。

    4. 与向量运算:标量可以与向量进行运算,如标量乘以向量会得到一个与原向量方向相同但大小不同的新向量。

    5. 在矩阵中:在矩阵理论中,标量可以看作是只有一行一列的矩阵,即1x1矩阵。

    6. 物理量:在物理学中,标量场的值是一个标量,例如温度场在每个点都有一个温度值。

    7. 与张量的关系:标量可以看作是0阶张量,因为它们在坐标变换下不改变。

    8. 在编程中:在计算机编程中,标量通常是指基本数据类型,如整数、浮点数等。

向量

  • 向量(Vector)是数学中的一种基本概念,它是既有大小又有方向的量。向量在物理学、工程学、计算机科学等领域中有着广泛的应用。

  • 特性:

    1. 大小(Magnitude):向量的大小或长度,可以是任意非负实数。
    2. 方向:向量的方向可以是任意的。
    3. 起点和终点:在几何学中,向量通常由起点(尾)和终点(头)定义。
    4. 相等性:只有当两个向量的大小和方向都相同时,它们才被认为是相等的。
  • 表示方法:

    1. 几何表示:通常用带箭头的线段表示,箭头指向表示方向。
    2. 坐标表示:在n维空间中,向量可以表示为一个有序的数列,如下。
      在这里插入图片描述
    3. 矩阵表示:向量也可以表示为矩阵的一行或一列。
  • 基本操作:

    1. 加法:两个向量相加,结果是一个新向量,其大小和方向是两个向量相应分量的矢量和。

    2. 减法:两个向量相减,结果是一个新向量,表示从第一个向量的终点指向第二个向量的终点的向量。

    3. 数乘:一个向量与一个标量相乘,结果是一个新向量,其方向与原向量相同或相反,大小是原向量大小的标量倍。

    4. 点积(内积):两个向量的点积是一个标量,计算公式如下,其中 θ 是两个向量之间的夹角。在这里插入图片描述

    5. 叉积(外积):仅在三维空间中定义,两个向量的叉积是一个向量,垂直于原来的两个向量,其大小等于原来两个向量构成的平行四边形的面积。

  • 应用:

    1. 物理学:表示力、速度、加速度等。
    2. 计算机图形学:用于处理图形的旋转、缩放、平移等变换。
    3. 机器学习:在数据表示和算法中广泛使用,如支持向量机(SVM)。
    4. 工程学:在电气工程中表示电流、电压等,在土木工程中表示力和位移。

张量

  • 张量(Tensor)是数学中的一种基本概念,它是多维数组的推广,用于表示高维数据和复杂的数学关系。张量可以是实数或复数,并且可以通过各种操作得到新的张量,例如加法、减法、乘法、转置和求和等。

  • 张量的定义

    • 张量是一个定义在一些向量空间和一些对偶空间的笛卡尔积上的多重线性映射,其坐标是n维空间内,有n个分量的一种量。其中每个分量都是坐标的函数,而在坐标变换时,这些分量也依照某些规则作线性变换。
  • 张量的性质

    • 张量可以表示高维数据,可以用来表示多个维度的信息。
    • 张量可以表示复杂的数学关系,可以用来表示多个变量之间的关系。
    • 张量可以通过各种操作得到新的张量,如加法、减法、乘法、转置、求和等。
    • 在深度学习中,张量是数据的基本单位,用于表示神经网络中各种参数和变量。
  • 张量与线性代数的关系

    • 张量与线性代数密切相关,张量可以看作是线性代数的一种推广。
    • 线性代数主要研究的是二维矩阵和向量,而张量则泛化了这些概念,可以表示多维数据和复杂的数学关系。
    • 在线性代数中,向量可以看作是一维张量,矩阵可以看作是二维张量。
  • 张量的应用

    • 张量在机器学习、深度学习、计算机视觉、自然语言处理等领域有广泛应用。
    • 在物理学中,张量提供了一个简明的数学框架用来描述和解决力学、电动力学、广义相对论物理问题。
    • 在工程学中,例如在扩散张量成像中,表达器官对于水的在各个方向的微分透性的张量可以用来产生大脑的扫描图。
  • 张量的基本运算

    • 加法:对应线性代数中的向量加法和矩阵加法。
    • 减法:对应线性代数中的向量减法和矩阵减法。
    • 乘法:对应线性代数中的向量乘法和矩阵乘法。
    • 转置:对应线性代数中的矩阵转置。
    • 求和:对应线性代数中的矩阵求和。
  • 张量的广播和拼接

    • 广播:当两个张量的尺寸不匹配时,可以使用广播来实现相加或相乘。
    • 拼接:可以用来将两个或多个张量拼接在一起,可以是横向拼接或纵向拼接。
  • 张量的梯度求导

    • 在深度学习中,张量的梯度求导是用于优化模型参数的关键操作。
  • 张量的实现

    • 在现代机器学习框架中,如PyTorch或TensorFlow,张量是核心的数据结构,提供了丰富的API来支持张量的各种操作。

降维

在线性代数中,降维通常指的是将数据从高维空间映射到低维空间的过程,同时尽可能保留原始数据的重要信息。这在数据科学和机器学习中非常重要,因为它可以帮助减少计算复杂度、避免维度灾难,并提高算法的性能。以下是一些常用的线性代数降维技术:

  1. 主成分分析(PCA)

    • PCA是一种统计方法,它通过正交变换将数据转换到新的坐标系统中,使得新坐标轴上的方差最大化。
    • 它找到一组正交主成分,这些成分按方差递减的顺序排列,通常只保留前几个主成分以实现降维。
  2. 奇异值分解(SVD)

    • SVD是一种因子分解方法,它可以用于矩阵近似,从而实现降维。
    • 通过保留最大的几个奇异值及其对应的奇异向量,可以近似原始矩阵,实现降维。
  3. 线性判别分析(LDA)

    • LDA是一种监督学习的降维技术,它不仅寻找数据的主要成分,还考虑了数据的分类标签。
    • 它的目标是最大化类间可分性,同时最小化类内差异性。
  4. 多维尺度分析(MDS)

    • MDS是一种将距离数据降维到二维或三维空间的技术,以便进行可视化。
    • 它通过保持原始数据点之间的距离来寻找低维空间中的点配置。
  5. t-分布随机邻域嵌入(t-SNE)

    • t-SNE是一种非线性降维技术,特别适合于高维数据的可视化。
    • 它通过概率分布来保持高维空间中的局部结构,并将其映射到低维空间。
  6. 自编码器(Autoencoders)

    • 自编码器是一种使用神经网络来学习数据的有效表示(编码)的方法。
    • 通过设计网络结构,可以在编码过程中实现降维。
  7. 因子分析(Factor Analysis)

    • 因子分析是一种统计方法,用于描述可观测变量之间的变异性,通常用于探索大量变量背后的潜在结构。
  8. 线性映射

    • 简单的线性映射,如选择数据集中最重要的几个特征,也可以看作是一种降维方法。

点积

  • 在线性代数中,点积(也称为内积或标量积)是定义在两个向量之间的一种二元运算。它将两个向量映射到一个标量(即一个单一的数值)。点积在不同的向量空间中可能有不同的定义,但在最常见的欧几里得向量空间中,两个向量的点积定义如下:

    • 给定两个向量 ab,它们在 n 维空间中的坐标分别为 (a1, a2, …, an) 和 (b1, b2, …, bn),它们的点积 a.b 计算如下:
      在这里插入图片描述
  • 点积的性质包括:

    1. 交换律
      在这里插入图片描述
    2. 分配律
      在这里插入图片描述
    3. 结合律
      在这里插入图片描述
    4. 正定性
      在这里插入图片描述
    5. 可数乘性
      在这里插入图片描述
  • 点积的一个重要应用是计算两个向量之间的夹角。如果 θ 是向量 ab 之间的夹角,则:
    在这里插入图片描述
    其中 ||a||||b|| 分别是向量 ab 的范数(或长度)。

矩阵-向量积

  • 矩阵-向量积是线性代数中的一种基本运算,它描述了如何将一个矩阵与一个向量相乘。这种运算在多个领域中都有应用,包括计算机图形学、数据科学、机器学习等。
  • 定义:给定一个 m x n 矩阵 A 和一个 n- 维列向量 x,矩阵-向量积 Ax 的结果是一个 m- 维列向量 y。具体地,如果 A 的元素为 aij,向量 x 的元素为xj,那么结果向量 y 的第 i个元素 yi 计算如下:
    在这里插入图片描述
    这里,yi 是通过对矩阵 A 的第 i 行与向量 x 的对应元素进行点积来计算的。
  • 例子:假设有一个矩阵 A 和一个向量 x:
    在这里插入图片描述
    那么矩阵-向量积 Ax计算如下:
    在这里插入图片描述
  • 性质
    1. 结合律
      在这里插入图片描述
    2. 分配律
      在这里插入图片描述
    3. 转置的乘法
      在这里插入图片描述
  • 应用
    • 线性变换:矩阵乘以向量可以表示一个线性变换,例如旋转、缩放、剪切等。
    • 求解线性方程组:矩阵-向量积可以用来表示和求解线性方程组 Ax = b
    • 机器学习:在机器学习中,矩阵-向量积常用于计算特征变换、权重更新等。

矩阵-矩阵积

  • 矩阵-矩阵积,也称为矩阵乘法,是线性代数中的一种基本运算,它定义了如何将两个矩阵相乘。这种运算在多个领域中都有应用,包括数学、物理学、工程学、计算机科学和数据科学。

  • 定义:给定两个矩阵 AB,其中 A 是一个 m x n 矩阵,B 是一个 n x p 矩阵,矩阵-矩阵积 AB 的结果是一个 m x p 矩阵 C。具体地,如果 A 的元素为 aijB的元素为 bjk,那么结果矩阵 C 的元素 cik 计算如下:
    在这里插入图片描述
    这里,cik 是通过对 A 的第 i 行与 B 的第 k 列进行点积来计算的。

  • 例子:假设有两个矩阵 AB
    在这里插入图片描述
    那么矩阵-矩阵积 AB 计算如下:
    在这里插入图片描述

  • 性质
    1. 结合律:(AB)C = A(BC),其中 ABC 是可以相乘的矩阵。
    2. 分配律:(A(B + C) = AB + AC 和 (B + C)A = BA + CA
    3. 转置的乘法:(AB)T = BTAT
    4. 标量乘法:(c A)B = A(cB) = c(AB),其中 c 是一个标量。
    5. 零矩阵A0 = 0 = 0A,其中 0 是零矩阵。

  • 应用

    • 线性变换:矩阵乘法可以表示一系列线性变换的组合。
    • 求解线性方程组:矩阵乘法可以用来表示和求解线性方程组的系数矩阵。
    • 矩阵分解:在数值线性代数中,矩阵分解是解决各种问题的关键,如 LU 分解、QR 分解等。
    • 机器学习:在机器学习中,矩阵乘法用于计算特征变换、权重矩阵的更新等。

范数

  • 在线性代数中,范数是一个函数,它定义了向量空间中向量的“大小”或“长度”。范数必须满足以下三个条件:
    1. 非负性:对于所有的向量 x,有 ||x|| ≥ 0,并且||x|| = 0当且仅当 x = 0(零向量)。
    2. 齐次性:对于所有的向量 x 和所有的标量 α,有 ||αx|| = |α|||x|| 。
    3. 三角不等式:对于所有的向量||x||和||y||,有 ||x+y|| ≤ ||x|| + ||y||。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/55743.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

css3-----2D转换、动画

2D 转换(transform) 转换(transform)是CSS3中具有颠覆性的特征之一,可以实现元素的位移、旋转、缩放等效果 移动:translate旋转:rotate缩放:scale 二维坐标系 2D 转换之移动 trans…

OpenGL笔记十九之相机系统

OpenGL笔记十九之相机系统 —— 2024-10-02 晚上 bilibili赵新政老师的教程看后笔记 code review! 文章目录 OpenGL笔记十九之相机系统1.运行1.1.游戏相机1.2.轨迹球相机 2.游戏相机与轨迹球相机切换3.博主笔记本要运行需要更改的文件更改1:28_OpenGL_CameraSystem/applicat…

C语言文件操作(下)(28)

文章目录 前言一、文件的打开和关闭打开打开模式相对路径和绝对路径 关闭 二、文件操作正确流程三、文件顺序读写函数fopenfclosefputcfgetcfputsfgetsfprintffscanfsprintfsscanffwritefread 四、文件随机读写函数fseekftellrewind 五、文件读取结束时候的判断feofferror具体例…

4个顶级的大模型推理引擎

LLM 在文本生成应用中表现出色,例如具有高理解度和流畅度的聊天和代码完成模型。然而,它们的庞大规模也给推理带来了挑战。基本推理速度很慢,因为 LLM 会逐个生成文本标记,需要对每个下一个标记进行重复调用。随着输入序列的增长&…

什么是 Tammann temperature

Tammann temperature (Tt_tt​) 是材料科学中一个重要的概念,它通常用于描述材料的热力学特性和相变行为。其定义与玻璃态和晶态材料的内部原子运动相关。Tammann 温度在研究材料的扩散、再结晶、以及玻璃化转变过程中具有重要意义。 1. Tammann 温度的定义 Tamma…

【AIGC】2022-NIPS-视频扩散模型

2022-NIPS-Video Diffusion Models 视频扩散模型摘要1. 引言2. 背景3. 视频扩散模型3.1. 重建引导采样以改进条件生成 4. 实验4.1. 无条件视频建模4.2. 视频预测4.3. 文本条件视频生成4.3.1 视频与图像建模的联合训练4.3.2 无分类器指导的效果4.3.3 更长序列的自回归视频扩展 5…

【多线程】详解 CAS 机制

🥰🥰🥰来都来了,不妨点个关注叭! 👉博客主页:欢迎各位大佬!👈 文章目录 1. CAS 是什么1.1 CAS 具体步骤1.2 CAS 伪代码 2. CAS 的应用2.1 实现原子类2.1.1 AtomInteger 类2.1.2 伪代…

word无法复制粘贴

word无法复制粘贴 使用word时复制粘贴报错 如下: 报错:运行时错误‘53’,文件未找到:MathPage.WLL 这是mathtype导致的。 解决方法 1)在mathtype下载目录下找到"\MathType\MathPage\64"下的"mathpa…

Qt开发第一讲

一、Qt项目里面有什么? 对各个文件的解释: Empty.pro文件 QT core gui # 要引入的Qt模块,后面学习到一些内容的时候可能会修改这里 #这个文件相当于Linux里面的makefile文件。makefile其实是一个非常古老的技术了。 #qmake搭配.pr…

C++之模版进阶篇

目录 前言 1.非类型模版参数 2.模版的特化 2.1概念 2.2函数模版特化 2.3 类模板特化 2.3.1 全特化和偏特化 2.3.2类模版特化应用实例 3.模版分离编译 3.1 什么是分离编译 3.2 模板的分离编译 3.3 解决方法 4. 模板总结 结束语 前言 在模版初阶我们学习了函数模版和类…

【MySQL】Ubuntu环境下MySQL的安装与卸载

目录 1.MYSQL的安装 2.MySQL的登录 3.MYSQL的卸载 4.设置配置文件 1.MYSQL的安装 首先我们要看看我们环境里面有没有已经安装好的MySQL 我们发现是默认是没有的。 我们还可以通过下面这个命令来确认有没有mysql的安装包 首先我们得知道我们当前的系统版本是什么 lsb_…

你还在为教学资料转换烦恼吗?4款神器安利给你,PDF转JPG一键搞定

工作或者学习的时候,我们经常得把PDF文件转换成JPG图片。可能是因为在手机上看起来方便,或者是想放到PPT里展示,反正把PDF转JPG的情况挺多的。那有什么好用的软件能做这个转换呢?今天我就给你们介绍几个好用的。 1. 福昕PDF高质量…

儿童需要学习C++多久才能参加信息学奥赛的CSP-J比赛?

信息学奥赛(NOI)是国内编程竞赛领域的顶尖赛事,而对于初学者来说,参加NOI的第一步通常是通过CSP-J(全国青少年信息学奥林匹克联赛初赛),这也是面向青少年程序员的入门级竞赛。作为信息学奥赛的基…

【解决办法】git clone报错unable to access ‘xxx‘: SSL certificate problem:

使用git clone 时报错unable to access xxx: SSL certificate problem: 这个报错通常是由于SSL证书问题引起的。通常可以按照以下步骤进行排查: 检查网络连接:确保你的网络连接正常,可以访问互联网。尝试使用其他网站或工具测试网络连接是否正…

基于SpringBoot vue3 的山西文旅网java网页设计与实现

博主介绍:专注于Java(springboot ssm springcloud等开发框架) vue .net php phython node.js uniapp小程序 等诸多技术领域和毕业项目实战、企业信息化系统建设,从业十五余年开发设计教学工作☆☆☆ 精彩专栏推荐订阅☆☆☆☆…

LeetCode讲解篇之1043. 分隔数组以得到最大和

文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 对于这题我们这么考虑,我们选择以数字的第i个元素做为分隔子数组的右边界,我们需要计算当前分隔子数组的长度为多少时能让数组[0, i]进行分隔数组的和最大 我们用数组f表示[0, i)区间内的…

docker 部署 Seatunnel 和 Seatunnel Web

docker 部署 Seatunnel 和 Seatunnel Web 说明: 部署方式前置条件,已经在宿主机上运行成功运行文件采用挂载宿主机目录的方式部署SeaTunnel Engine 采用的是混合模式集群 编写Dockerfile并打包镜像 Seatunnel FROM openjdk:8 WORKDIR /opt/seatunne…

自动驾驶-问题笔记-待解决

参考线的平滑方法 参考线平滑算法主要有三种: 离散点平滑;螺旋曲线平滑;多项式平滑; 参考链接:参考线平滑 对于平滑方法,一直不太理解平滑、拟合以及滤波三者的作用与区别; 规划的起点&#x…

leetcode第189题:轮转数组(C语言版)

思路1(不推荐) 保存数组最后一个元素,然后数组全体元素后移一位,把保存的最后一个元素存放到数组的第一个位置,重复这一操作,直到执行完了k次。 时间复杂度:需要用k次循环,里面套一层…

MySQL的驱动安装

1、下载并安装MySQL 下载地址: 建议在下列框中选择LTS长期支持版本,下载对应的MSI安装文件。 安装完成后,将MySQL的环境bin路径添加到环境变量中。 可以运行MySQL Configurator进行配置,主要设置密码,并初始化。其余…