二分查找算法专题(1)

找往期文章包括但不限于本期文章中不懂的知识点:

个人主页:我要学编程(ಥ_ಥ)-CSDN博客

所属专栏: 优选算法专题

目录

二分查找算法的介绍 

704. 二分查找

34. 在排序数组中查找元素的第一个和 最后一个位置

35. 搜索插入位置 

69. x的平方根 

总结


二分查找算法的介绍 

想必大家对这个算法应该不算陌生了,在C语言阶段就已经学习过了。 其是在暴力枚举的基础上进行优化的。例如:在一个有序数组中查找某个元素是否存在。

但是二分查找算法也有缺点,就是需要数据有二段性,不一定是数组全部有序。

二分查找算法其实也是双指针算法中对撞指针的一种拓展,主要是利用了数据的二段性。

下面我们就来进行练习。

704. 二分查找

题目:

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target  ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1


示例 1:

输入: nums = [-1,0,3,5,9,12], target = 9输出: 4
解释: 9 出现在 nums 中并且下标为 4

示例 2:

输入: nums = [-1,0,3,5,9,12], target = 2输出: -1
解释: 2 不存在 nums 中因此返回 -1

提示:

  1. 你可以假设 nums 中的所有元素是不重复的。
  2. n 将在 [1, 10000]之间。
  3. nums 的每个元素都将在 [-9999, 9999]之间。

思路:这里既可以使用最简单的暴力枚举,也可以使用二分查找来解决。

代码实现:

暴力枚举:

class Solution {public int search(int[] nums, int target) {for (int i = 0; i < nums.length; i++) {if (nums[i] == target) {return i;}}return -1;}
}

 二分查找:

class Solution {public int search(int[] nums, int target) {int left = 0;int right = nums.length-1;while (left <= right) { // 这里得判断=的情况int mid = (left+right) / 2; // 这里可能会有溢出的风险if (nums[mid] > target) {right = mid-1;} else if (nums[mid] < target) {left = mid+1;} else {return mid;}}return -1;}
}

注意:由于本题数据量不是很大,因此 mid = (left+right) / 2; 就不会溢出,但是当数据量非常大时,两者相加就会导致溢出。有小伙伴可能会有疑惑:left 为 0,right 在 int 中,为什么会导致溢出呢?确实这种情况是正常的,但是当第二次计算mid 且left 为上一次的mid 值呢?这就会溢出了。解决办法为:mid = left + (right - left)/2;上面这个题目只是来练练手,下面才开始真正的算法题。

34. 在排序数组中查找元素的第一个和 最后一个位置

题目:

给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]

你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]

示例 2:

输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]

示例 3:

输入:nums = [], target = 0
输出:[-1,-1]

提示:

  • 0 <= nums.length <= 105
  • -109 <= nums[i] <= 109
  • nums 是一个非递减数组
  • -109 <= target <= 109

思路:题目说给的数组是非递减的,什么意思呢?

这里要查找的不是一个元素,而是一组连续的数据,也就是一段连续的子区间。 这里可能有小伙伴会想到我们前面学习的滑动窗口算法求子序列的问题。 但是这里不应该优先使用这个方法,因为滑动窗口算法是同向双指针, 而这里我们推测出了数据的特性,应该优先使用二分查找。

这里是要查找一组数据的端点下标,那么我们就可以直接忽略这组数据的中间,直接找端点即可。那么这就从查找一段数据,变为了查找两个值。但是新的问题又来了,怎么找端点呢?相信有聪明的小伙伴已经想到怎么做了。直接暴力枚举去遍历数组就完了。没错,这虽然是一个笨办法,但是总好过没有办法。

遍历的方式:从数组最左端开始遍历,找左端点,接着从数组最右端开始,找右端点即可。

代码实现:

class Solution {public int[] searchRange(int[] nums, int target) {int[] ans = {-1,-1};if (nums.length == 0) { // 排除特殊情况return ans;}// 找左端点int left = 0;while (left < nums.length && nums[left] != target) { // 防止越界left++;}if (left == nums.length) { // 数组中没有目标值return ans;} else {ans[0] = left;}// 找右端点int right = nums.length-1;while (right >= 0 && nums[right] != target) { // 防止越界right--;}if (right >= 0) {ans[1] = right;}return ans;}
}

虽然这是暴力枚举,但是从力扣上面的结果来看,还是不错的。

上面的方法可以说是流氓做法了,不符合题目的要求:用二分查找来解决。

二分查找同样还是去找符合数据的左端点和右端点。

寻找左端点过程:

寻找右端点过程(精简版):

上面处理这么多,其实就是在证明三件事:

1、根据查找的端点位置,从而划分了合法区域和非法区域,因为端点位置肯定是在有效区域内的。再根据 left 和 right 的相对位置来判断下一步的走向。

左端点:left = mid + 1 ---> 跳出非法区域;right = mid ---> 保留在合法区域。

右端点:left = mid ---> 保留在合法区域;right = mid -1 ---> 跳出非法区域。

2、在查找的过程中,中点的选取。根据查找的端点位置和第一点的结论,从而决定中点的位置。

左端点:right = mid 的特性可能会导致最后死循环,因此中点尽量要靠左,即 mid = left + (right-left) / 2。

右端点:left = mid 的特性可能会导致最后死循环,因此中点尽量要靠右,即 mid = left + (right-left +1) / 2。

3、 查找左端点和右端点的过程中,循环条件只能是 left < right,绝不能出现等于的情况,可能会导致死循环。因为一旦相遇并且结果满足 right 或者 left 不动的情况,那么就会死循环。

上面这些细节问题处理完之后,代码就比较好写了。

代码实现:

class Solution {public int[] searchRange(int[] nums, int target) {int[] ans = {-1,-1};if (nums.length == 0) { // 排除特殊情况return ans;}// 找左端点int left = 0;int right = nums.length-1;while (left < right) {int mid = left + (right-left) / 2; // 找靠左的位置if (nums[mid] >= target) {right = mid; // 保证在合法区域内} else {left = mid+1; // 保证有可能跳出非法区域}}// 走到这里,说明left与right相遇了if (nums[left] == target) { // 判断是否为左端点ans[0] = left; // left 与 right 都是可以的} else { // 说明数组中没有要找的数据return ans;}// 找右端点left = 0;right = nums.length-1;while (left < right) {int mid = left + (right-left+1) / 2; // 找靠右的位置if (nums[mid] <= target) {left = mid; // 保证在合法区域内} else {right = mid-1; // 保证有可能跳出非法区域}}// 走到这里,说明left与right相遇了if (nums[right] == target) { // 判断是否为右端点ans[1] = right; // left 与 right 都是可以的}return ans;}
}

还有两个要注意的地方:

因此数组中一旦存在我们要查找的数据的话,肯定是存在左右端点的。

35. 搜索插入位置 

题目:

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

请必须使用时间复杂度为 O(log n) 的算法。

示例 1:

输入: nums = [1,3,5,6], target = 5
输出: 2

示例 2:

输入: nums = [1,3,5,6], target = 2
输出: 1

示例 3:

输入: nums = [1,3,5,6], target = 7
输出: 4

提示:

  • 1 <= nums.length <= 104
  • -104 <= nums[i] <= 104
  • nums 为 无重复元素 的 升序 排列数组
  • -104 <= target <= 104

思路:这里和第一题有点类似,但不同的是这一题的数组中可能不存在 target 这个数据。但是方法还是类似的。

当 [target,right] 区间是合法区间时,right = mid ---> 保证 right 在合法区间内,left = mid+1 ---> 保证 left 有可能进入合法区间,mid = left + (right - left) / 2 ---> 靠左的位置。同理,当[left,target]为合法区间时,也是类似的,这里就不过多赘述了。

代码实现:

1、当 [left, target] 是合法区间时:

class Solution {public int searchInsert(int[] nums, int target) {int left = 0;int right = nums.length-1;// 假设[left, target]是合法区间while (left < right) {int mid = left + (right-left+1) / 2;if (nums[mid] > target) {right = mid-1;} else {left = mid;}}// 判断是否存在if (nums[left] == target) { // 实际存在return left;} else { // 不存在// 判断是插入左边还是右边位置if (nums[left] > target) {return left;} else {return left+1;}}}
}

2、 当 [target,right] 是合法区间时:

class Solution {public int searchInsert(int[] nums, int target) {int left = 0;int right = nums.length-1;// 假设[target, right]是合法区间while (left < right) {int mid = left + (right-left) / 2;if (nums[mid] >= target) {right = mid;} else {left = mid+1;}}// 判断是否存在if (nums[left] == target) { // 实际存在return left;} else { // 不存在// 判断是插入左边还是右边位置if (nums[left] > target) {return left;} else {return left+1;}}}
}

69. x的平方根 

题目:

给你一个非负整数 x ,计算并返回 x 的 算术平方根 。

由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。

注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。

示例 1:

输入:x = 4
输出:2

示例 2:

输入:x = 8
输出:2
解释:8 的算术平方根是 2.82842..., 由于返回类型是整数,小数部分将被舍去。

提示:

  • 0 <= x <= 231 - 1

思路: 题目让我们求一个大于等于0整数的算术平方根,并且对最终结果进行向下取整。

方法一:直接暴力枚举即可。

代码实现:

class Solution {// 暴力枚举public int mySqrt(int x) {if (x == 0 || x == 1) { // 排除特殊情况return x;}for (long i = 1; i <= x; i++) {if (i * i == x) {return (int)i;} else if (i * i > x) {return (int)i-1;}}return -1; // 这里只是过审}
}

注意:由于最后面的 return -1;只是为了让我们的代码编译通过,并不起实际的作用。

我们前面的暴力枚举就是把 [1,x] 之间的数据按照升序的方式挨个使了个遍。 从这里我们就可以使用二分查找算法了。

其实我们最终的目的就是为了找到大于或者的结果,然后再让大于的-1,等于的不变,而这些只能让 target 和 left 在一起。

代码实现:

class Solution {// 二分查找public int mySqrt(int x) {if (x == 0 || x == 1) { // 排除特殊情况return x;}long left = 1;long right = x;// 最终的结果是向下取整的,即 <= 是合法区域的while (left < right) {long mid = left + (right-left+1) / 2;if (mid*mid > x) {right = mid-1;} else {left = mid;}}// 找到了return (int)left;}
}

注意:

1、数据量是比较大的,因此相乘的结果会溢出,我们得用 long类型来接收。 

2、这里的二分查找是不能使用第一道题的那种的。

其实没弄明白也没关系,这里反正就两种情况,可以直接去套用,再不济暴力枚举总可以了吧。

总结

1、对于查找固定的数据的情况,可以使用第一题中的二分查找方法:根据要查找的结果,进行比较分为三种情况——大于、等于、小于。

2、对于范围(区间)查找和不确定性查找的情况,可以使用我们后面画图推出来的二分查找:根据查找的结果,进行比较分为两种情况——合法区域、非法区域(根据要查找的数据进行分区),然后再分别更新 left 和 right——合法的一定要确保依旧存在于合法区域,非法的要确保有希望调到合法区域。再就是计算中点的方式和循环条件的确定,都是由 left 和 right 的变化来决定的(具体可见图)。

我们以后常用的也是第二种二分查找的方法。

好啦!本期 二分查找算法专题(1)的学习之旅就到此结束啦!我们下一期再一起学习吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/55437.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【光伏混合储能】VSG并网运行,构网型变流器,虚拟同步机仿真

摘要 本文提出了一种基于光伏发电与混合储能系统结合的虚拟同步发电机&#xff08;VSG&#xff09;控制策略&#xff0c;该策略能够在并网运行时稳定电网电压和频率。通过仿真分析&#xff0c;验证了该策略在各种运行工况下的有效性&#xff0c;展示了其在电力系统中的广泛应用…

数据结构--集合框架

目录 1. 什么是集合框架 2. 背后所涉及的数据结构以及算法 2.1 什么是数据结构 2.2 容器背后对应的数据结构 1. 什么是集合框架 Java 集合框架 Java Collection Framework &#xff0c;又被称为容器 container &#xff0c;是定义在 java.util 包下的一组接口 int…

禾赛嵌入式面试题及参考答案(2万字长文)

TCP/IP 的连接建立(三次握手)和断开过程(四次挥手) 连接建立(三次握手): 第一次握手:客户端向服务器发送一个 SYN(同步)包,这个包中包含客户端选择的初始序列号(Sequence Number)。此时客户端进入 SYN_SENT 状态,表示客户端已发送 SYN 包等待服务器确认。 第二…

MyBatis-Plus如何分页查询?

MyBatis-Plus提供了一种简单而强大的分页查询功能&#xff0c;可以通过使用Page对象和Mapper接口中的方法来实现。以下是分页查询的基本步骤&#xff1a; 添加分页插件依赖 确保你的项目中已经添加了MyBatis-Plus的分页插件依赖。 <dependency><groupId>com.bao…

蓝桥杯Python集训知识点(初级)

蓝桥杯Python集训知识点&#xff08;初级&#xff09; 蓝桥杯作为国内知名的IT竞赛&#xff0c;其Python组别对于初学者来说是一个很好的锻炼平台。为了帮助初学者更好地准备蓝桥杯Python比赛&#xff0c;以下是一份针对初学者的集训知识点文档&#xff0c;涵盖了入门到初级阶…

软件测试人员发现更多程序bug

软件测试人员发现更多程序bug 1. 理解需求和业务&#xff0c;需求评审时候发现bug 熟悉了产品的业务流程、才能迅速找出软件中存在的一些重要的缺陷&#xff0c;发现的软件缺陷才是有价值的。否则即使你能找到一些软件缺陷&#xff0c;那也是纯软件的缺陷&#xff0c;价值不大…

CORE MVC 过滤器 (筛选器)《2》 TypeFilter、ServiceFilter

TypeFilter、ServiceFilter ServiceFilter vs TypeFilter ServiceFilter和TypeFilter都实现了IFilterFactory ServiceFilter需要对自定义的Filter进行注册&#xff0c;TypeFilter不需要 ServiceFilter的Filter生命周期源自于您如何注册&#xff08;全局、区域&#xff09;&…

SpringCloud-基于Docker和Docker-Compose的项目部署

一、初始化环境 1. 卸载旧版本 首先&#xff0c;卸载可能已存在的旧版本 Docker。如果您不确定是否安装过&#xff0c;可以直接执行以下命令&#xff1a; sudo yum remove docker \docker-client \docker-client-latest \docker-common \docker-latest \docker-latest-logro…

了解芯片光刻与OPC

欢迎关注更多精彩 关注我&#xff0c;学习常用算法与数据结构&#xff0c;一题多解&#xff0c;降维打击。 参考资料&#xff1a; 光刻技术与基本流程 https://www.bilibili.com/video/BV1tP4y1j7BA OPC https://www.bilibili.com/video/BV1o94y1U7Td 论文&#xff1a;计算…

[网络]抓包工具介绍 tcpdump

一、tcpdump tcpdump是一款基于命令行的网络抓包工具&#xff0c;可以捕获并分析传输到和从网络接口流入和流出的数据包。 1.1 安装 tcpdump 通常已经预装在大多数 Linux 发行版中。如果没有安装&#xff0c;可以使用包管理器 进行安装。例如 Ubuntu&#xff0c;可以使用以下…

DBeaver显示PostgreSQL数据库的信息模式

DBeaver连接PostgreSQL数据库后&#xff0c;默认情况下是不加载信息模式的&#xff0c;如果有需要&#xff0c;我们可以通过设置显示信息模式。 具体步骤&#xff1a;点击数据库连接–>右键打开设置–>连接设置–>常规–>导航视图–>自定义–>勾选显示系统对…

前端的全栈混合之路Meteor篇:运行在浏览器端的数据库-MiniMongo介绍及其前后端数据实时同步示例

Meteor 是一个全栈 JavaScript 框架&#xff0c;致力于简化 Web 应用开发。MiniMongo 是 Meteor 框架中的一个独特组件&#xff0c;它将 MongoDB 数据库的功能带到了客户端&#xff0c;使客户端能够像操作数据库一样&#xff0c;进行查询、插入、更新和删除操作。这使得前端开发…

overleaf的使用[4]:图表与插图管理

菜鸟&#xff1a;老鸟&#xff0c;我最近在用Overleaf写论文&#xff0c;但在插入图表和插图时总是遇到问题。你能帮帮我吗&#xff1f; 老鸟&#xff1a;当然可以&#xff01;图表和插图在LaTeX中是非常重要的部分。你有没有试过用 figure 和 table 环境&#xff1f; 菜鸟&a…

宁夏众智科技OA办公系统存在SQL注入漏洞

漏洞描述 宁夏众智科技OA办公系统存在SQL注入漏洞 漏洞复现 POC POST /Account/Login?ACTIndex&CLRHome HTTP/1.1 Host: Content-Length: 45 Cache-Control: max-age0 Origin: http://39.105.48.206 Content-Type: application/x-www-form-urlencoded Upgrade-Insecur…

Spring Boot项目中使用MyBatis

在Spring Boot项目中使用MyBatis可以极大地简化配置过程&#xff0c;因为Spring Boot提供了很多自动化配置的功能。以下是一个简单的指南&#xff0c;介绍如何在Spring Boot项目中使用MyBatis。 1. 添加依赖 首先&#xff0c;你需要在pom.xml文件中添加MyBatis和MyBatis-Spri…

【在Linux世界中追寻伟大的One Piece】System V共享内存

目录 1 -> System V共享内存 1.1 -> 共享内存数据结构 1.2 -> 共享内存函数 1.2.1 -> shmget函数 1.2.2 -> shmot函数 1.2.3 -> shmdt函数 1.2.4 -> shmctl函数 1.3 -> 实例代码 2 -> System V消息队列 3 -> System V信号量 1 -> Sy…

【MySQL 06】表的增删查改

目录 1.insert 增添数据 1.1单行数据 全列插入 1.2多行数据 指定列插入 1.3插入否则更新 1.4.插入否则替换 2.select查找 2.1 全列查找 2.2指定列查找 2.3查询字段为表达式 2.4为查询结果指定别名 2.5 结果去重 2.6 where条件查询 2.7结果排序 2.8.筛选分页结果…

Python中深拷贝和浅拷贝

# 在Python中&#xff0c;浅拷贝&#xff08;shallow copy&#xff09;和深拷贝&#xff08;deep copy&#xff09;是两种不同的复制方法&#xff0c;主要用于复制复杂对象&#xff08;如列表、字典、集合等&#xff09;。 # # 浅拷贝&#xff1a; # # 浅拷贝会创建一个新的对象…

侧边菜单的展开和折叠

环境准备&#xff1a;Vue3Element-UI Plus <script setup> import {ref} from "vue";// 是否折叠菜单&#xff0c;默认折叠 const isCollapse ref(true)// 退出登录 function logout() {alert(退出) }// 个人中心 function profile() {alert(个人中心) } <…

Java后端面试题+下一篇答案+实况场景题

uu们大家好&#xff01;市面上面试题很多&#xff0c;这边汇总并更新一下java后端面试的题目&#xff0c;助大家早日斩下心仪的offer&#xff01;&#xff01;&#xff08;下次跟新场景题...等我多碰几次壁...哈哈哈哈哈&#xff09; 这边放题目&#xff0c;下一篇跟新所有另面…