工业缺陷检测——Windows 10本地部署AnomalyGPT工业缺陷检测大模型

0. 引言

在缺陷检测中,由于真实世界样本中的缺陷数据极为稀少,有时在几千甚至几万个样品中才会出现一个缺陷数据。因此,以往的模型只需在正常样本上进行训练,学习正常样品的数据分布。在测试时,需要手动指定阈值来区分每种项目的正常和异常实例,然而这并不适用于实际的生产环境。
大型视觉语言模型(LVLMs),诸如 MiniGPT - 4 和 LLaVA,已展现出强大的图像理解能力,在各类视觉任务中取得显著性能。那么,大模型能否应用于工业缺陷检测领域呢?AnomalyGPT 对此展开了深入探索

1.AnomalyGPT

针对缺陷检测中的问题,现有方法主要分为两大类:基于重建和基于特征嵌入。基于重建的方法主要是将异常样本重建为相应的正常样本,并通过计算重建误差来检测异常。而基于特征嵌入的方法则侧重于对正常样本的特征嵌入进行建模,然后通过计算测试样本的特征嵌入与正常样本特征嵌入库的距离,来判断是否异常。但这些现有方法在面对新数据时,都需要大量数据重新训练,无法满足真实的工业缺陷检测需求。

AnomalyGPT论文作者提出了创新性的解决办法,开创性地将大视觉语言模型应用于工业异常检测领域,推出了 AnomalyGPT 模型。该模型能够检测异常的存在(分类)和位置(定位),且无需手动设置阈值。此外,AnomalyGPT 可以提供关于图像的信息,并支持交互式参与,使用户能够根据其需求和所提供的答案提出后续问题。同时,AnomalyGPT 还可以对少量的正常样本(无需缺陷样品)进行上下文学习,从而能够快速适应以前未见过的物体。

AnomalyGPT 模型的创新点如下:

  • 首次将大视觉语言模型应用到工业异常检测领域;
  • 支持输出缺陷 mask;
  • 支持多轮对话;
  • 只需要少量数据,即可泛化到其他新数据的检测当中。
    在这里插入图片描述

2.环境安装

2.1 GPU环境

要本地部署AnomalyGPT 需要用到GPU加速,GPU的显存要大于等于8G,我这里部署的环境是系统是win10,GPU是3090ti 24G显存,cuda版本是11.8,cudnn版本是8.9。
在这里插入图片描述

2.2 创建环境

# 创建并配置环境依赖
conda create -n agpt python=3.10
conda activate agpt

2.3 下载源码

git clone https://github.com/CASIA-IVA-Lab/AnomalyGPT.git

2.4 安装依赖

2.4.1 pytorch

这里pytorch建议单独安装,可以找到cuda对应的版本进行安装:

conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.8 -c pytorch -c nvidia

2.4.2 安装deepspeed

官方给的环境默认会安装deepspeed库(支持sat库训练),此库对于模型推理并非必要,同时部分Windows环境安装此库的某些版本时会遇到问题。 这里可以使用deepspeed 0.3.16这个版本:

pip install deepspeed==0.3.16

2.4.3 安装requirements.txt文件内其他依赖

打开源码里面的requirements.txt文件,把torch和deepspeed的依赖删掉,然后安装:

pip install -r requirements.txt

3. 模型下载与合并

3.1 ImageBind模型

从https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth下载模型,然后放到以下目录:
在这里插入图片描述

3.2 合并模型

这里模型需要LLaMA的模型与Vicuna Delta模型合并得到。

3.2.1 下载LLaMA 7B模型

可以从LLaMa官方下载到7B模型,这里我把模型转到百度网盘了,通过网盘分享的文件:LLaMA
链接: https://pan.baidu.com/s/1syklVFou4r252PxcCaZY7w 提取码: 5ffx 。只下载7B和tokenizer.model,然后把model放在7B文件夹。
在这里插入图片描述
然后在AnomalyGPT根目录下创建一个LLaMA目录,把7B目录复制到这个目录下:
在这里插入图片描述

3.2.2 转换成Huggingface格式

  • 安装protobuf
pip install protobuf==3.20
  • 转换模型
    可以参考官网给的文档转换模型:
    在这里插入图片描述
    也可以直接复制下面的代码进行模型转换:

import argparse
import gc
import json
import os
import shutil
import warnings
from typing import Listimport torchfrom transformers import GenerationConfig, LlamaConfig, LlamaForCausalLM, LlamaTokenizer, PreTrainedTokenizerFast
from transformers.convert_slow_tokenizer import TikTokenConvertertry:from transformers import LlamaTokenizerFast
except ImportError as e:warnings.warn(e)warnings.warn("The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion")LlamaTokenizerFast = NoneNUM_SHARDS = {"7B": 1,"8B": 1,"8Bf": 1,"7Bf": 1,"13B": 2,"13Bf": 2,"34B": 4,"30B": 4,"65B": 8,"70B": 8,"70Bf": 8,"405B": 8,"405B-MP16": 16,
}CONTEXT_LENGTH_FOR_VERSION = {"3.1": 131072, "3": 8192, "2": 4096, "1": 2048}def compute_intermediate_size(n, ffn_dim_multiplier=1, multiple_of=256):return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3)) + multiple_of - 1) // multiple_of)def read_json(path):with open(path, "r") as f:return json.load(f)def write_json(text, path):with open(path, "w") as f:json.dump(text, f)def write_model(model_path,input_base_path,model_size=None,safe_serialization=True,llama_version="1",vocab_size=None,num_shards=None,instruct=False,
):os.makedirs(model_path, exist_ok=True)tmp_model_path = os.path.join(model_path, "tmp")os.makedirs(tmp_model_path, exist_ok=True)params = read_json(os.path.join(input_base_path, "params.json"))num_shards = NUM_SHARDS[model_size] if num_shards is None else num_shardsparams = params.get("model", params)n_layers = params["n_layers"]n_heads = params["n_heads"]n_heads_per_shard = n_heads // num_shardsdim = params["dim"]dims_per_head = dim // n_headsbase = params.get("rope_theta", 10000.0)inv_freq = 1.0 / (base ** (torch.arange(0, dims_per_head, 2).float() / dims_per_head))if base > 10000.0 and float(llama_version) < 3:max_position_embeddings = 16384else:max_position_embeddings = CONTEXT_LENGTH_FOR_VERSION[llama_version]if params.get("n_kv_heads", None) is not None:num_key_value_heads = params["n_kv_heads"]  # for GQA / MQAnum_key_value_heads_per_shard = num_key_value_heads // num_shardskey_value_dim = dims_per_head * num_key_value_headselse:  # compatibility with other checkpointsnum_key_value_heads = n_headsnum_key_value_heads_per_shard = n_heads_per_shardkey_value_dim = dim# permute for sliced rotarydef permute(w, n_heads, dim1=dim, dim2=dim):return w.view(n_heads, dim1 // n_heads // 2, 2, dim2).transpose(1, 2).reshape(dim1, dim2)print(f"Fetching all parameters from the checkpoint at {input_base_path}.")# Load weightsif num_shards == 1:# Not sharded# (The sharded implementation would also work, but this is simpler.)loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")else:# Shardedcheckpoint_list = sorted([file for file in os.listdir(input_base_path) if file.endswith(".pth")])print("Loading in order:", checkpoint_list)loaded = [torch.load(os.path.join(input_base_path, file), map_location="cpu") for file in checkpoint_list]param_count = 0index_dict = {"weight_map": {}}for layer_i in range(n_layers):filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"if num_shards == 1:# Unshardedstate_dict = {f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(loaded[f"layers.{layer_i}.attention.wq.weight"], n_heads=n_heads),f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(loaded[f"layers.{layer_i}.attention.wk.weight"],n_heads=num_key_value_heads,dim1=key_value_dim,),f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"],f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],}else:# Sharded# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.state_dict = {f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][f"layers.{layer_i}.attention_norm.weight"].clone(),f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][f"layers.{layer_i}.ffn_norm.weight"].clone(),}state_dict[f"model.layers.{layer_i}.self_attn.q_proj.weight"] = permute(torch.cat([loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)for i in range(len(loaded))],dim=0,).reshape(dim, dim),n_heads=n_heads,)state_dict[f"model.layers.{layer_i}.self_attn.k_proj.weight"] = permute(torch.cat([loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(num_key_value_heads_per_shard, dims_per_head, dim)for i in range(len(loaded))],dim=0,).reshape(key_value_dim, dim),num_key_value_heads,key_value_dim,dim,)state_dict[f"model.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat([loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(num_key_value_heads_per_shard, dims_per_head, dim)for i in range(len(loaded))],dim=0,).reshape(key_value_dim, dim)state_dict[f"model.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat([loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(len(loaded))], dim=1)state_dict[f"model.layers.{layer_i}.mlp.gate_proj.weight"] = torch.cat([loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(len(loaded))], dim=0)state_dict[f"model.layers.{layer_i}.mlp.down_proj.weight"] = torch.cat([loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(len(loaded))], dim=1)state_dict[f"model.layers.{layer_i}.mlp.up_proj.weight"] = torch.cat([loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(len(loaded))], dim=0)state_dict[f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq"] = inv_freqfor k, v in state_dict.items():index_dict["weight_map"][k] = filenameparam_count += v.numel()torch.save(state_dict, os.path.join(tmp_model_path, filename))filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"if num_shards == 1:# Unshardedstate_dict = {"model.embed_tokens.weight": loaded["tok_embeddings.weight"],"model.norm.weight": loaded["norm.weight"],"lm_head.weight": loaded["output.weight"],}else:concat_dim = 0 if llama_version in ["3", "3.1"] else 1state_dict = {"model.norm.weight": loaded[0]["norm.weight"],"model.embed_tokens.weight": torch.cat([loaded[i]["tok_embeddings.weight"] for i in range(len(loaded))], dim=concat_dim),"lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(len(loaded))], dim=0),}for k, v in state_dict.items():index_dict["weight_map"][k] = filenameparam_count += v.numel()torch.save(state_dict, os.path.join(tmp_model_path, filename))# Write configsindex_dict["metadata"] = {"total_size": param_count * 2}write_json(index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json"))ffn_dim_multiplier = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1multiple_of = params["multiple_of"] if "multiple_of" in params else 256if llama_version in ["3", "3.1"]:bos_token_id = 128000if instruct:eos_token_id = [128001, 128008, 128009]else:eos_token_id = 128001else:bos_token_id = 1eos_token_id = 2config = LlamaConfig(hidden_size=dim,intermediate_size=compute_intermediate_size(dim, ffn_dim_multiplier, multiple_of),num_attention_heads=params["n_heads"],num_hidden_layers=params["n_layers"],rms_norm_eps=params["norm_eps"],num_key_value_heads=num_key_value_heads,vocab_size=vocab_size,rope_theta=base,max_position_embeddings=max_position_embeddings,bos_token_id=bos_token_id,eos_token_id=eos_token_id,)config.save_pretrained(tmp_model_path)if instruct:generation_config = GenerationConfig(do_sample=True,temperature=0.6,top_p=0.9,bos_token_id=bos_token_id,eos_token_id=eos_token_id,)generation_config.save_pretrained(tmp_model_path)# Make space so we can load the model properly now.del state_dictdel loadedgc.collect()print("Loading the checkpoint in a Llama model.")model = LlamaForCausalLM.from_pretrained(tmp_model_path, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)# Avoid saving this as part of the config.del model.config._name_or_pathmodel.config.torch_dtype = torch.float16print("Saving in the Transformers format.")model.save_pretrained(model_path, safe_serialization=safe_serialization)shutil.rmtree(tmp_model_path, ignore_errors=True)class Llama3Converter(TikTokenConverter):def __init__(self, vocab_file, special_tokens=None, instruct=False, model_max_length=None, **kwargs):super().__init__(vocab_file, additional_special_tokens=special_tokens, **kwargs)tokenizer = self.converted()chat_template = ("{% set loop_messages = messages %}""{% for message in loop_messages %}""{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}""{% if loop.index0 == 0 %}""{% set content = bos_token + content %}""{% endif %}""{{ content }}""{% endfor %}""{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}")self.tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer,bos_token="<|begin_of_text|>",eos_token="<|end_of_text|>" if not instruct else "<|eot_id|>",chat_template=chat_template if instruct else None,model_input_names=["input_ids", "attention_mask"],model_max_length=model_max_length,)def write_tokenizer(tokenizer_path, input_tokenizer_path, llama_version="2", special_tokens=None, instruct=False):tokenizer_class = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFastif llama_version in ["3", "3.1"]:tokenizer = Llama3Converter(input_tokenizer_path, special_tokens, instruct, model_max_length=CONTEXT_LENGTH_FOR_VERSION[llama_version]).tokenizerelse:tokenizer = tokenizer_class(input_tokenizer_path)print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}.")tokenizer.save_pretrained(tokenizer_path)return tokenizerDEFAULT_LLAMA_SPECIAL_TOKENS = {"3": ["<|begin_of_text|>","<|end_of_text|>","<|reserved_special_token_0|>","<|reserved_special_token_1|>","<|reserved_special_token_2|>","<|reserved_special_token_3|>","<|start_header_id|>","<|end_header_id|>","<|reserved_special_token_4|>","<|eot_id|>",  # end of turn]+ [f"<|reserved_special_token_{i}|>" for i in range(5, 256 - 5)],"3.1": ["<|begin_of_text|>","<|end_of_text|>","<|reserved_special_token_0|>","<|reserved_special_token_1|>","<|finetune_right_pad_id|>","<|reserved_special_token_2|>","<|start_header_id|>","<|end_header_id|>","<|eom_id|>",  # end of message"<|eot_id|>",  # end of turn"<|python_tag|>",]+ [f"<|reserved_special_token_{i}|>" for i in range(3, 256 - 8)],
}def main():parser = argparse.ArgumentParser()parser.add_argument("--input_dir",help="Location of LLaMA weights, which contains tokenizer.model and model folders",)parser.add_argument("--model_size",default=None,help="'f' Deprecated in favor of `num_shards`: models correspond to the finetuned versions, and are specific to the Llama2 official release. For more details on Llama2, checkout the original repo: https://huggingface.co/meta-llama",)parser.add_argument("--output_dir",help="Location to write HF model and tokenizer",)parser.add_argument("--safe_serialization", default=True, type=bool, help="Whether or not to save using `safetensors`.")# Different Llama versions used different default values for max_position_embeddings, hence the need to be able to specify which version is being used.parser.add_argument("--llama_version",choices=["1", "2", "3", "3.1"],default="1",type=str,help="Version of the Llama model to convert. Currently supports Llama1 and Llama2. Controls the context size",)parser.add_argument("--num_shards",default=None,type=int,help="The number of individual shards used for the model. Does not have to be the same as the number of consolidated_xx.pth",)parser.add_argument("--special_tokens",default=None,type=List[str],help="The list of special tokens that should be added to the model.",)parser.add_argument("--instruct",default=False,type=bool,help="Whether the model is an instruct model or not. Will affect special tokens for llama 3.1.",)args = parser.parse_args()if args.model_size is None and args.num_shards is None:raise ValueError("You have to set at least `num_shards` if you are not giving the `model_size`")if args.special_tokens is None:# no special tokens by defaultargs.special_tokens = DEFAULT_LLAMA_SPECIAL_TOKENS.get(str(args.llama_version), [])spm_path = os.path.join(args.input_dir, "tokenizer.model")vocab_size = len(write_tokenizer(args.output_dir,spm_path,llama_version=args.llama_version,special_tokens=args.special_tokens,instruct=args.instruct,))if args.model_size != "tokenizer_only":write_model(model_path=args.output_dir,input_base_path=args.input_dir,model_size=args.model_size,safe_serialization=args.safe_serialization,llama_version=args.llama_version,vocab_size=vocab_size,num_shards=args.num_shards,instruct=args.instruct,)if __name__ == "__main__":main()

然后执行:

python convert_llama_weights_to_hf.py --input_dir llama/7B --model_size 7B --output_dir llama/7Bhuggingface

可能报以下错误:

 from transformers.convert_slow_tokenizer import TikTokenConverter
ImportError: cannot import name 'TikTokenConverter' from 'transformers.convert_slow_tokenizer' (C:\Users\Easyai\.conda\envs\agpt\lib\site-packages\transformers\convert_slow_tokenizer.py)

解决方法:

pip install -e .
或者
pip install --upgrade transformers

在LLaMa下会多出一个7Bhuggingface的目录,目录文件结构如下:
在这里插入图片描述

3.2.3 获取Vicuna Delta权重

从https://huggingface.co/lmsys/vicuna-7b-delta-v0/tree/main 获取模型:
在这里插入图片描述
然后在LLaMa目录创建相应的目录,并把模型放到目录下:
在这里插入图片描述

3.2.4 合并LLaMA和Vicuna Delta

  • 安装fastchat
pip install fschat

可能会报下面的错误:

Collecting wavedrom (from markdown2[all]->fschat==0.2.1)Downloading http://172.16.2.230:8501/packages/be/71/6739e3abac630540aaeaaece4584c39f88b5f8658ce6ca517efec455e3de/wavedrom-2.0.3.post3.tar.gz (137 kB)Preparing metadata (setup.py) ... errorerror: subprocess-exited-with-error× python setup.py egg_info did not run successfully.│ exit code: 1╰─> [48 lines of output]C:\Users\Easyai\.conda\envs\agpt\lib\site-packages\setuptools\__init__.py:94: _DeprecatedInstaller: setuptools.installer and fetch_build_eggs are deprecated.!!********************************************************************************Requirements should be satisfied by a PEP 517 installer.If you are using pip, you can try `pip install --use-pep517`.********************************************************************************!!dist.fetch_build_eggs(dist.setup_requires)WARNING: The repository located at 172.16.2.230 is not a trusted or secure host and is being ignored. If this repository is available via HTTPS we recommend you use HTTPS instead, otherwise you may silence this warning and allow it anyway with '--trusted-host 172.16.2.230'.ERROR: Could not find a version that satisfies the requirement setuptools_scm (from versions: none)ERROR: No matching distribution found for setuptools_scmTraceback (most recent call last):File "C:\Users\Easyai\.conda\envs\agpt\lib\site-packages\setuptools\installer.py", line 102, in _fetch_build_egg_no_warnsubprocess.check_call(cmd)File "C:\Users\Easyai\.conda\envs\agpt\lib\subprocess.py", line 369, in check_callraise CalledProcessError(retcode, cmd)subprocess.CalledProcessError: Command '['C:\\Users\\Easyai\\.conda\\envs\\agpt\\python.exe', '-m', 'pip', '--disable-pip-version-check', 'wheel', '--no-deps', '-w', 'd:\\temp\\tmpjryrv_kd', '--quiet', 'setuptools_scm']' returned non-zero exit status 1.The above exception was the direct cause of the following exception:Traceback (most recent call last):File "<string>", line 2, in <module>File "<pip-setuptools-caller>", line 34, in <module>File "D:\temp\pip-install-6achpvqg\wavedrom_e8564a73a10342d7801b8a35deab645d\setup.py", line 28, in <module>setup(File "C:\Users\Easyai\.conda\envs\agpt\lib\site-packages\setuptools\__init__.py", line 116, in setup_install_setup_requires(attrs)File "C:\Users\Easyai\.conda\envs\agpt\lib\site-packages\setuptools\__init__.py", line 89, in _install_setup_requires_fetch_build_eggs(dist)File "C:\Users\Easyai\.conda\envs\agpt\lib\site-packages\setuptools\__init__.py", line 94, in _fetch_build_eggsdist.fetch_build_eggs(dist.setup_requires)File "C:\Users\Easyai\.conda\envs\agpt\lib\site-packages\setuptools\dist.py", line 617, in fetch_build_eggsreturn _fetch_build_eggs(self, requires)File "C:\Users\Easyai\.conda\envs\agpt\lib\site-packages\setuptools\installer.py", line 39, in _fetch_build_eggsresolved_dists = pkg_resources.working_set.resolve(File "C:\Users\Easyai\.conda\envs\agpt\lib\site-packages\pkg_resources\__init__.py", line 897, in resolvedist = self._resolve_dist(File "C:\Users\Easyai\.conda\envs\agpt\lib\site-packages\pkg_resources\__init__.py", line 933, in _resolve_distdist = best[req.key] = env.best_match(File "C:\Users\Easyai\.conda\envs\agpt\lib\site-packages\pkg_resources\__init__.py", line 1271, in best_matchreturn self.obtain(req, installer)File "C:\Users\Easyai\.conda\envs\agpt\lib\site-packages\pkg_resources\__init__.py", line 1307, in obtainreturn installer(requirement) if installer else NoneFile "C:\Users\Easyai\.conda\envs\agpt\lib\site-packages\setuptools\installer.py", line 104, in _fetch_build_egg_no_warnraise DistutilsError(str(e)) from edistutils.errors.DistutilsError: Command '['C:\\Users\\Easyai\\.conda\\envs\\agpt\\python.exe', '-m', 'pip', '--disable-pip-version-check', 'wheel', '--no-deps', '-w', 'd:\\temp\\tmpjryrv_kd', '--quiet', 'setuptools_scm']' returned non-zero exit status 1.[end of output]note: This error originates from a subprocess, and is likely not a problem with pip.
error: metadata-generation-failed× Encountered error while generating package metadata.
╰─> See above for output.note: This is an issue with the package mentioned above, not pip.
hint: See above for details.

解决方法:
第一步:

pip install setuptools_scm

第二步,清华源安装

pip install wavedrom -i https://pypi.tuna.tsinghua.edu.cn/simple

然后安装:

pip install fschat==0.1.10
  • 合并模型
python -m fastchat.model.apply_delta --base llama/7Bhuggingface --target pretrained_ckpt/vicuna_ckpt/7b_v0 --delta llama/vicuna-7b-v0-delta

合并,注意target路径是合并后所在的文件夹路径,即AnomalyGPT/pretrained_ckpt/vicuna_ckpt/7b_v0在这里插入图片描述

3.3 获取AnomalyGPT Delta权重

3.3.1 Delta 权重

从官方的git界面给的连接下载对接权重,权重下载链接:https://huggingface.co/openllmplayground/pandagpt_7b_max_len_1024/tree/main
在这里插入图片描述
在这里插入图片描述
把下载好的模型放到下面目录:
在这里插入图片描述

3.3.2 AnomalyGPT Delta权重

在AnomalyGPT/code目录下创建这三个目录,然后从官方git界面下载相应的模型权重放到里面:
在这里插入图片描述
对应的模型不能下错:
在这里插入图片描述

4.运行项目

4.1 测试代码

带界面的测试代码在code目录下,切换到code,运行web_demo.py,这里可能要安装gradio:

pip install gradio==3.50.0

运行测试代码:

python web_demo.py

在这里插入图片描述

4.2 测试

打开http://127.0.0.1:7860,打开图像,可以用中文或者英文进行交互,效果如下:
有缺陷的图像:
在这里插入图片描述
在这里插入图片描述
无缺陷的图像:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/55149.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AntFlow-Vue3 :一个仿钉钉流程审批,且满足99.8%以上审批流程需求的企业级工作流平台,开源且免费!

在现代企业管理中&#xff0c;流程审批的高效性直接影响到工作的流畅度与生产力。最近&#xff0c;我发现了一个非常有趣的项目—— AntFlow-Vue3 。这个项目不仅提供了一个灵活且可定制的工作流平台&#xff0c;还能让用户以可视化的方式创建和管理审批流程。 如果你是一名前…

OpenCV_自定义线性滤波(filter2D)应用详解

OpenCV filter2D将图像与内核进行卷积&#xff0c;将任意线性滤波器应用于图像。支持就地操作。当孔径部分位于图像之外时&#xff0c;该函数根据指定的边界模式插值异常像素值。 卷积核本质上是一个固定大小的系数数组&#xff0c;数组中的某个元素被作为锚点&#xff08;一般…

CICD 持续集成与持续交付

一 、CICD是什么 CI/CD 是指持续集成&#xff08;Continuous Integration&#xff09;和持续部署&#xff08;Continuous Deployment&#xff09;或持续交付&#xff08;Continuous Delivery&#xff09; 1.1 持续集成&#xff08;Continuous Integration&#xff09; 持续集…

OpenSource - 开源WAF_SamWaf

文章目录 PreSafeLine VS SamWaf开发初衷软件介绍架构界面主要功能 使用说明下载最新版本快速启动WindowsLinuxDocker 启动访问升级指南自动升级手动升级 在线文档 代码相关代码托管介绍和编译已测试支持的平台测试效果 安全策略问题反馈许可证书贡献代码 Pre Nginx - 集成Mod…

游戏开发2025年最新版——八股文面试题(unity,虚幻,cocos都适用)

1.静态合批与动态合批的原理是什么&#xff1f;有什么限制条件&#xff1f;为什么&#xff1f;对CPU和GPU产生的影响分别是什么&#xff1f; 原理&#xff1a;Unity运行时可以将一些物体进行合并&#xff0c;从而用一个描绘调用来渲染他们&#xff0c;就是一个drawcall批次。 限…

OpenGL ES 绘制一个三角形(2)

OpenGL ES 绘制一个三角形(2) 简述 本节我们基于Android系统&#xff0c;使用OpenGL ES来实现绘制一个三角形。在OpenGL ES里&#xff0c;三角形是一个基础图形&#xff0c;其他的图形都可以使用三角形拼接而成&#xff0c;所以我们就的案例就基于这个开始。 在Android系统中…

Java项目实战II基于Java+Spring Boot+MySQL的厨艺交流平台设计与实现(源码+数据库+文档)

目录 一、前言 二、技术介绍 三、系统实现 四、文档参考 五、核心代码 六、源码获取 全栈码农以及毕业设计实战开发&#xff0c;CSDN平台Java领域新星创作者&#xff0c;专注于大学生项目实战开发、讲解和毕业答疑辅导。获取源码联系方式请查看文末 一、前言 在美食文化…

计算机毕业设计 基于Python的热门微博数据可视化分析系统的设计与实现 Python+Django+Vue 可视化大屏 附源码 讲解 文档

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…

OJ在线评测系统 前端创建题目(增) 更新题目(改) 题目列表(查) 以及做题页面的开发 基于VUECLI脚手架画界面

目录 前端创建页面的开发一 创建一个路由 用acro design写 前端创建页面的开发二 题目管理页面 搜索 最終效果 题目更新页面的开发 携带参数的那种 修改路由 页码更新细节 我们先处理菜单项的权限控制和权限隐藏 在这里改 属性绑定一个函数 可以参考聚合搜索项目…

Jenkins入门:从搭建到部署第一个Springboot项目(踩坑记录)

本文讲述在虚拟机环境下(模拟服务器)&#xff0c;使用docker方式搭建jenkins&#xff0c;并部署一个简单的Springboot项目。仅记录关键步骤和遇到的坑 目录 一、环境准备和基础工具安装 1. 环境 2. yum安装 3. docker安装 4. 内网穿透工具安装natapp 二、jenkins安装和配置…

毕业设计选题:基于ssm+vue+uniapp的校园二手交易平台小程序

开发语言&#xff1a;Java框架&#xff1a;ssmuniappJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;M…

操作系统与进程

1.操作系统 操作系统是计算机中的一个重要软件&#xff0c;它是一个专门进行管理的软件。操作系统可以通过驱动程序来间接管理外部硬件&#xff0c;也可以为计算机中的程序提供一个稳定的运行环境&#xff0c;从而来方便管理各种程序的运行&#xff0c;让程序之间的运行互不影…

上交所服务器崩溃:金融交易背后的技术隐患暴露杭州BGP高防服务器43.228.71.X

一、上交所宕机事件始末 2024 年 9 月 27 日&#xff0c;上交所交易系统突发崩溃&#xff0c;这一事件犹如一颗巨石投入平静的湖面&#xff0c;引起了轩然大波。当天上午&#xff0c;众多投资者反馈券商交易出现延迟问题&#xff0c;随后上交所发布了《关于股票竞价交易出现异常…

AI驱动的Java开发框架:Spring AI Alibaba实战部署教程

前言 随着生成式 AI 的快速发展&#xff0c;基于 AI 开发框架构建 AI 应用的诉求迅速增长&#xff0c;涌现出了包括 LangChain、LlamaIndex 等开发框架&#xff0c;但大部分框架只提供了 Python 语言的实现。但这些开发框架对于国内习惯了 Spring 开发范式的 Java 开发者而言&a…

敏感字段加密 - 华为OD统一考试(E卷)

2024华为OD机试(E卷+D卷+C卷)最新题库【超值优惠】Java/Python/C++合集 题目描述 【敏感字段加密】给定一个由多个命令字组成的命令字符串: 1、字符串长度小于等于127字节,只包含大小写字母,数字,下划线和偶数个双引号; 2、命令字之间以一个或多个下划线 进行分割; 3、可…

【JavaSE系列】IO流

目录 前言 一、IO流概述 二、IO流体系结构 三、File相关的流 1. FileInputStream 2. FileOutputStream 3. FileReader 4. FileWriter 四、缓冲流 五、转换流 1. InputStreamReader 2. OutputStreamWriter 六、数据流 七、对象流 八、打印流 九、标准输入输出流…

Apache APISIX学习(2):安装Grafana、prometheus

一、Grafana安装 1、介绍 Grafana 是一个监控仪表系统&#xff0c;它是由 Grafana Labs 公司开源的的一个系统监测 (System Monitoring) 工具。它可以大大帮助你简化监控的复杂度&#xff0c;你只需要提供你需要监控的数据&#xff0c;它就可以帮你生成各种可视化仪表。同时它…

Deep Learning for Video Anomaly Detection: A Review 深度学习视频异常检测综述阅读

Deep Learning for Video Anomaly Detection: A Review 深度学习视频异常检测综述阅读 AbstractI. INTRODUCTIONII. BACKGROUNDA. Notation and TaxonomyB. Datasets and Metrics III. SEMI-SUPERVISED VIDEO ANOMALY DETECTIONA. Model InputB. MethodologyC. Network Archite…

基于Python实现的国庆节庆祝小程序

祖国母亲即将迎来75周年华诞&#xff0c;在这个特殊的日子里&#xff0c;我们可以用编程的方式来表达对祖国的祝福。本文将使用Python编写一个简单的国庆节庆祝小程序&#xff0c;通过一些编程技巧和设计为国庆节增添一些程序员的特色。 ⭕️庆祝国庆 ⭐️ 程序设计思路&#x…

828华为云征文|部署个人知识管理系统 SiyuanNote

828华为云征文&#xff5c;部署个人知识管理系统 SiyuanNote 一、Flexus云服务器X实例介绍二、Flexus云服务器X实例配置2.1 重置密码2.2 服务器连接2.3 安全组配置2.4 Docker 环境搭建 三、Flexus云服务器X实例部署 SiyuanNote3.1 SiyuanNote 介绍3.2 SiyuanNote 部署3.3 Siyua…