语义分割的标签(目标处为255,其余处为0)
实例分割的标签(yolo.txt),描述边界的多边形顶点的归一化位置
绘制在原图类似蓝色的边框所示。
废话不多说,直接贴代码;
import os
import cv2
import numpy as np
import shutildef img2label(imgPath, labelPath, imgbjPath, seletName):# 检查labelPath文件夹是否存在if not os.path.exists(labelPath):os.makedirs(labelPath)if not os.path.exists(imgbjPath):os.makedirs(imgbjPath)imgList = os.listdir(imgPath)for imgName in imgList:# 筛选if imgName.split('_')[0] != seletName and seletName != '':continueprint(imgName)img = cv2.imread(imgPath + imgName, cv2.IMREAD_COLOR)h, w, _ = img.shape# print(h, w)GrayImage=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #图片灰度化处理ret, binary = cv2.threshold(GrayImage,40,255,cv2.THRESH_BINARY) #图片二值化,灰度值大于40赋值255,反之0# ret, binary = cv2.threshold(binary, 80, 255, cv2.THRESH_BINARY_INV) # (黑白二值反转)cv2.imwrite(r'denoisedfz.png', binary) #保存图片# 腐蚀# kernel = np.ones((3,3),np.uint8) # binary = cv2.erode(binary,kernel,iterations = 3)thresholdL = h/100 * w/100 #设定阈值thresholdH = h/1 * w/1 #设定阈值#cv2.fingContours寻找图片轮廓信息"""提取二值化后图片中的轮廓信息 ,返回值contours存储的即是图片中的轮廓信息,是一个向量,内每个元素保存了一组由连续的Point点构成的点的集合的向量,每一组Point点集就是一个轮廓,有多少轮廓,向量contours就有多少元素"""contours,hierarch=cv2.findContours(binary,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_TC89_L1)contoursNorm = []objs= []# print(contours)for i in range(len(contours)):area = cv2.contourArea(contours[i]) #计算轮廓所占面积# print(area)if area > thresholdL and area < thresholdH:obj = ['0']for point in contours[i]:obj.append(str(point[0][0] * 1.0 / w)) # 获取xobj.append(str(point[0][1] * 1.0 / h)) # 获取ycontoursNorm.append(contours[i])objs.append(obj)# print(objs[10])# 查看效果cv2.drawContours(img, contoursNorm, -1,(255,0,0),2)cv2.imwrite(imgbjPath+imgName, img) #保存图片if len(objs) == 0:print('不保存标签,跳过!')continue# 写入txtrealName = imgName.split('-l')[0]f=open(labelPath + realName + '.txt',"w")for obj in objs:f.writelines(' '.join(obj))f.writelines('\n')f.close()# break# oridata 保存着原图像
# maskdata 保存着标签图像
# lab 保存这yolo格式的标签文件
# bj 保存着标记好边界的图像def OrganizeImages(path):imgs = os.listdir(path)for im in imgs:imPath = os.path.join(path, im)if im.split('.')[-1] == 'jpg':# 原图像# 移动到oridatasource_path = imPathdestination_path = 'data\\oridata\\' + imshutil.copy(source_path, destination_path)if im.split('.')[-1] == 'png':# mask label# 移动到maskdatasource_path = imPathdestination_path = 'data\\maskdata\\' + imshutil.copy(source_path, destination_path)if __name__ == '__main__':img2label(imgPath='data\\maskdata\\', # maskdata 保存着标签图像labelPath='data\\lab\\', # lab 保存这yolo格式的标签文件imgbjPath = 'data\\bj\\', # bj 保存着标记好边界的图像seletName='')