基于yolov8的红绿灯目标检测训练与Streamlit部署(代码+教程)

项目背景

随着智能交通系统的快速发展,自动驾驶技术逐渐成为研究的热点。在自动驾驶领域中,准确识别道路上的交通信号灯是确保车辆安全行驶的关键技术之一。近年来,深度学习技术的发展为交通信号灯的识别提供了强大的支持。YOLO(You Only Look Once)作为一种高效的物体检测算法,在实时场景下有着广泛的应用。本文将介绍如何使用YOLOv8模型进行红绿灯检测,并结合Streamlit实现一个简单的Web应用。
在这里插入图片描述

YOLOv8 & Streamlit 简介

YOLOv8 简介

YOLOv8是YOLO系列的最新版本,它在继承了前几代YOLO的优点基础上进行了改进,具有更快的速度和更高的精度。YOLOv8采用了统一的架构设计,可以轻松地在不同的任务之间切换,如目标检测、实例分割等。该模型支持多种后端框架,包括PyTorch等。
在这里插入图片描述

特性
  • 统一的架构:YOLOv8提供了一个统一的训练脚本,可以快速地调整模型以适应不同的任务需求。
  • 高性能:相较于之前的版本,YOLOv8在速度与准确性方面都有所提升。
  • 易于部署:YOLOv8支持多种部署方式,包括ONNX格式,使得模型可以在不同平台上运行。
Streamlit 简介

Streamlit是一个用于创建和共享数据应用的开源Python库。它简化了构建交互式数据可视化界面的过程,允许开发者通过简单的Python代码快速搭建功能丰富的Web应用。

数据集

为了训练YOLOv8模型进行红绿灯检测,我们需要一个包含红绿灯图像的数据集。一个合适的公开数据集可以从以下链接下载:

  • Link: [假设的数据集链接]
    在这里插入图片描述

模型训练

复制配置文件

从YOLOv8的GitHub仓库中下载官方提供的配置文件,并根据我们的需求进行调整。例如,我们可以选择一个预训练的基础模型作为起点,并修改类别数以适应红绿灯检测任务。

配置YOLOv8参数

编辑配置文件中的路径设置,指向我们准备好的数据集目录。此外,还需要设置训练相关的参数,如batch size、学习率等。
总共4各类别:
0: Traffic Light-Red Light
1: Traffic Light-Yellow Light
2: Traffic Light-Green Light
3: Traffic Light-Off

train: data_train/images # train images (relative to 'path') 4 images
val: data_valid/images # val images (relative to 'path') 4 images
test: # test images (optional)
nc: 4
# Classes
names:0: Traffic Light-Red Light1: Traffic Light-Yellow Light2: Traffic Light-Green Light3: Traffic Light-Off
挂载数据集

确保数据集能够被模型正确读取。通常,这涉及到将数据集按照训练、验证和测试集分开,并生成相应的.txt文件指示每个集合中图片的位置。
在这里插入图片描述

模型验证

在训练过程中定期保存检查点,并在验证集上评估模型性能。使用诸如mAP(mean Average Precision)这样的指标来衡量模型的有效性。

# Use the model
model.train(data="yolo8.yaml", epochs=120,batch=4)

模型导出及量化

模型量化

为了提高模型在边缘设备上的推理速度,我们可以对其进行量化处理。量化可以减少模型大小并加快推理速度,但可能会牺牲一些精度。

ONNX 推理验证

将训练好的模型转换成ONNX格式,这是一种开放的交换格式,能够在多个平台和框架间进行模型互操作。然后,在ONNX环境中验证模型的准确性和性能。
在这里插入图片描述

Streamlit 部署ONNX模型-web

使用Streamlit创建一个用户界面,用户可以通过上传图片或者输入URL来让模型进行实时的红绿灯检测。通过调用ONNX模型来进行预测,并将结果展示给用户。
在这里插入图片描述

代码

mport numpy as np
import onnxruntime
import cv2
import matplotlib.pyplot as plt target_size = 640.inputs = {}img_path = 'data/data153372/trafficlight/JPEGImages/00009.jpg'
session = onnxruntime.InferenceSession('ppyolov2_infer_quant_dynamic.onnx')
input_names = [input.name for input in session.get_inputs()]
output_names = [output.name for output in session.get_outputs()]
img = cv2.imread(img_path)
origin_shape = img.shape[:2]
# im_scale_y = target_size / float(origin_shape[0])
# im_scale_x = target_size / float(origin_shape[1])
im_scale_x = im_scale_y = 1.0
scale_factor = np.array([[im_scale_y, im_scale_x]]).astype('float32')im = cv2.resize(img,(int(target_size), int(target_size)))
im = im / 255.0
mean = [0.485, 0.456, 0.406]
std =[0.229, 0.224, 0.225]
im = (im - mean) / std
# im = im[:, :, ::-1]
im = np.expand_dims(np.transpose(im, (2, 0, 1)), axis=0)inputs['im_shape'] =  np.array([origin_shape]).astype('float32')
inputs['scale_factor'] = scale_factor
inputs['image'] = im.astype('float32') np_boxes = session.run(output_names, inputs)[0]
expect_boxes = (np_boxes[:, 1] > 0.2) & (np_boxes[:, 0] > -1)
np_boxes = np_boxes[expect_boxes, :]def draw_results(results, img):for result in results:class_id, scores, x_min, y_min, x_max, y_max = resultprint(class_id)cv2.rectangle(img, (x_min, y_min), (x_max, y_max), (255, 0, 255))draw_results(np_boxes, img)
cv2.imwrite('save.jpg', img)
plt.imshow(img)
plt.show()

总结

项目总结

通过上述步骤,我们成功地训练了一个用于红绿灯检测的YOLOv8模型,并且将其部署到了一个由Streamlit构建的简单Web应用中。这不仅展示了深度学习在实际问题中的应用潜力,也为未来的开发提供了基础。

阿利同学的博客
计算机视觉、图像处理、毕业辅导、作业帮助、代码获取请私信

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/53219.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

集成电路学习:什么是I/O输入输出

I/O:输入输出 I/O,全称Input/Output,即输入输出,是信息处理系统(如计算机)与外部世界(可能是人类或另一信息处理系统)之间的通信方式。具体来说,输入是系统接收的信号或数…

【Java那些事】关于Git的使用

目录 下拉代码仓库篇 上传代码篇 下拉代码仓库篇 第一步,下拉代码,复制链接。 (从开源网站上复制链接) (建立本地仓库) 这里的URL一般都会自动填充刚刚复制的链接【瞅瞅,确保是想要的那个项…

MATLAB中的线性规划与非线性规划

目录 1. 引言 2. 线性规划(LP) 2.1 线性规划的基本概念 2.2 MATLAB中的线性规划求解 2.3 线性规划的应用 3. 非线性规划(NLP) 3.1 非线性规划的基本概念 3.2 MATLAB中的非线性规划求解 3.3 非线性规划的应用 4. 线性规划…

安防监控视频平台LntonAIServer视频智能分析平台新增视频质量诊断功能

随着安防行业的快速发展,视频监控系统已经成为维护公共安全和个人隐私的重要工具。然而,由于各种因素的影响,视频流的质量可能会受到影响,从而导致监控效果不佳。为了解决这一问题,LntonAIServer推出了全新的视频质量诊…

Gitee镜像关联GitHub仓库

申请 GitHub 私人令牌 GitHub 私人令牌用于授予 Gitee 读写 Github 仓库的权限。 1)登录GitHub,通过 个人头像 > Settings > 下拉左侧菜单栏进入 Developer settings。 2)Personal access tokens > Tokens(classic) > Generate …

hackme靶机通关攻略

用nmap扫描端口 进入靶场后在首页注册登录 登录后进行抓包 复制下来保存为txt文档,使用sqlmap进行注入 查数据库(这里是在桌面打开的终端,因为txt文档我是建在桌面的) sqlmap -r \3.txt --current-db 查表 sqlmap -r \3.txt -D …

解密Docker核心:深入理解Docker基础架构

随着云计算技术的普及,Docker容器技术在现代应用开发和部署中占据了重要地位。要充分理解Docker的优势与运用,深入掌握其基础架构是关键。本文将深入探讨Docker的核心组成部分及其在容器化平台中的角色和作用。 一、Docker的基础架构概述 Docker的基础…

Linux 上如何做MySQL数据备份

目录 SQL备份脚本创建crontabcrontab命令总结查看特定目录中的周期性任务 crontab(cron table 的缩写)是 Unix/Linux 系统上用于设置周期性被执行的任务的工具。它允许用户定义需要在特定时间(比如每天凌晨、每周的某个时间等)自动…

16个你必须掌握的Python数据类型

文末赠免费精品编程资料~~ Python,以其简洁的语法和强大的数据处理能力,成为初学者和专业人士的首选语言。数据类型是Python编程的基石,理解它们对于编写高效、清晰的代码至关重要。下面,我们将逐一探索并实践Python中10个核心数…

多模态生成发文量大涨!最新成果统一Transformer和Diffusion,含金量超高

最近多模态生成领域也在“神仙打架”,比如Meta的全新训练方法Transfusion,用单个模型就能同时生成文本和图像! 还有之前华为、清华提出的个性化多模态内容生成技术PMG,生成的内容可“量身定制”,更能满足偏好。 这些…

使用Blender云渲染的好处是什么?

​Blender是一款功能强大的开源3D创作软件,用于包括建模、动画、仿真、渲染、合成和视频编辑在内的多种应用。然而,Blender的渲染过程有时可能非常耗费资源,特别是处理复杂的3D场景时。作为CG行业不可或缺的一部分,云渲染通过使用…

shell脚本1----编程规范与变量

shell脚本 shell的功能 Shell(壳程序)是一个特殊的应用程序,它介于操作系统内核与用户之间,充当了一个“命令解释器”的角色,负责接收用户输入的操作指令(命令)并进行解释,将需要执…

【C++11(一)之入门基础)】

文章目录 C简介统一的列表初始化{}初始化 std::initializer_liststd::initializer_list是什么类型:std::initializer_list使用场景: 声明autodecltypenullptr STL中一些变化 C简介 在2003年C标准委员会曾经提交了一份技术勘误表(…

大数据新视界--大数据大厂之MySQL 数据库课程设计:数据安全深度剖析与未来展望

💖💖💖亲爱的朋友们,热烈欢迎你们来到 青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…

一种误差较小的轮廓面积计算算法

1.背景 基于微分思想的轮廓面积计算方法之一是将多边形轮廓边与X轴会Y轴进行围合,形成一个个梯形,每个梯形的面积有符号,累计求和即得到多边形轮廓的面积。详见博主之前的文章, 记录导致计算轮廓面积出错的一个坑点-CSDN博客文章…

项目拆解:短视频冷门赛道—ai绘画+温馨小屋,引流变现全攻略

在这个快节奏的时代,工作、学习、家庭的重担仿佛三座大山,让人喘不过气,心情时常跌入谷底。就像蜗牛遇到威胁会缩进壳里,我们也会在疲惫和忧虑时,渴望一个属于自己的温暖小窝,来安放疲惫的心灵。而自媒体平…

Flink 1.14.* Flink窗口创建和窗口计算源码

解析Flink如何创建的窗口,和以聚合函数为例,窗口如何计算聚合函数 一、构建不同窗口的build类1、全局窗口2、创建按键分流后的窗口 二、在使用窗口处理数据流时,不同窗口创建的都是窗口算子WindowOperator1、聚合函数实现2、创建全局窗口(入参…

SpringFrameWork学习笔记

本笔记基于【尚硅谷新版SSM框架全套视频教程,Spring6SpringBoot3最新SSM企业级开发】https://www.bilibili.com/video/BV1AP411s7D7?vd_sourcea91dafe0f846ad7bd19625e392cf76d8 总结 资料获取网址:https://www.wolai.com/v5Kuct5ZtPeVBk4NBUGBWF 技术…

Java项目: 基于SpringBoot+mysql房产销售系统 (含源码+数据库+开题报告+答辩PPT+毕业论文)

一、项目简介 本项目是一套基于SpringBootmysql房产销售系统 包含:项目源码、数据库脚本等,该项目附带全部源码可作为毕设使用。 项目都经过严格调试,eclipse或者idea 确保可以运行! 该系统功能完善、界面美观、操作简单、功能齐…

Halcon基于灰度值的模板匹配

Halcon基于灰度值的模板匹配 基于灰度值的模板匹配是最经典的模板匹配算法,也是最早提出来的模板匹配算法。这种算法的根本思想是,计算模板图像与检测图像之间的像素灰度差值的绝对值总和(SAD方法)或者平方差总和(SSD…