python学习11-Pytorch环境安装与模型搭建

先查看下自己的电脑是否是英伟达显卡
在这里插入图片描述
在这里插入图片描述
如果不是就需要租用平台了,如 AutoDL算力云
https://www.autodl.com/home

CUDA

当涉及到深度学习和 Python 时,CUDA 是一个非常重要的概念,它是 NVIDIA 开发的并行计算平台和应用程序编程接口(API)。CUDA 可以用来加速深度学习任务,特别是神经网络的训练和推断,因为它允许在 NVIDIA GPU 上进行高效的并行计算。
以下是有关 CUDA 的详细解释:

什么是 CUDA?

CUDA(Compute Unified Device Architecture)是一种并行计算平台和编程模型,旨在利用 NVIDIA GPU(图形处理单元)的强大并行计算能力。它允许开发者使用 GPU 进行通用目的的高性能计算,而不仅仅是图形渲染。

  1. 为什么要使用 CUDA?
    使用 CUDA 有以下几个优点:
  • 并行计算: GPU 具有大量的处理单元和内存带宽,适用于处理大规模的并行计算任务,如深度学习的神经网络训练。
  • 加速深度学习: 深度学习中的大多数计算操作都可以受益于 CUDA 的并行性。因此,使用 CUDA 可以显著加速神经网络的训练和推断。
  • 大规模数据处理: 对于需要处理大量数据的任务,CUDA 可以加速数据处理和分析,例如图像处理、自然语言处理等。

使用 CUDA 进行深度学习

要在深度学习项目中使用 CUDA,您需要执行以下步骤:

  • 选择合适的 GPU: 首先,您需要选择适合您需求的 NVIDIA GPU。不同型号的 GPU 具有不同的计算能力和内存大小,因此您需要根据您的任务来选择。
  • 安装 CUDA 工具包和 cuDNN: 您需要安装 NVIDIA 的 CUDA 工具包和 cuDNN 库。CUDA 工具包包括编译器、运行时库和 GPU 驱动程序,cuDNN 是用于深度学习的 GPU 加速库。
  • 选择深度学习框架: 大多数流行的深度学习框架(如 TensorFlow 和 PyTorch)都支持 CUDA。您只需要确保您的框架安装正确,并配置为使用 GPU。
  • 编写 CUDA 加速的代码: 如果您希望进一步优化您的深度学习模型,可以编写 CUDA 内核(kernel)来执行特定的计算任务。这需要一些 CUDA 编程经验。
  • GPU 设备管理: 在使用 CUDA 时,您可以使用 NVIDIA 的 GPU 设备管理工具(例如 nvidia-smi)来监视 GPU 的利用率和性能,以确保任务正常运行。

CUDA 编程

如果您希望进一步深入了解 CUDA 编程,可以学习以下关键概念:

  • CUDA 核心思想: CUDA 编程的核心思想是将计算任务分解成许多线程块(thread block)和网格(grid),然后在 GPU 上并行执行这些线程。
  • CUDA C/C++ 编程: CUDA C/C++ 是一种用于编写 GPU 内核的编程语言。您可以学习如何编写 CUDA 内核,以便针对特定任务进行并行计算。
  • 共享内存和线程同步: 在 CUDA 中,共享内存用于线程之间的数据共享,线程同步用于协调线程的执行。理解这些概念对于编写高效的 CUDA 内核至关重要。
  • CUDA 库: 除了自定义 CUDA 内核,还可以使用各种 CUDA 库来执行常见的任务,如矩阵乘法、卷积等。
  • 性能优化: CUDA 编程还涉及到性能优化,包括选择合适的线程块大小、减少数据传输次数、使用共享内存等。
    要成为一名熟练的 CUDA 编程人员,通常需要深入学习和实践。CUDA 编程是一个广泛的领域,可以显著提高深度学习和其他科学计算任务的性能。如果您对深度学习和 GPU 加速感兴趣,学习 CUDA 编程是一个有价值的投资。

cuDNN

cuDNN(CUDA Deep Neural Network library)是由 NVIDIA 开发的深度神经网络(DNN)加速库。它是专门为深度学习任务而设计的,旨在充分利用 NVIDIA GPU 的并行计算能力,以加速神经网络的训练和推断过程。
cuDNN 提供了一组高性能的 GPU 加速函数和优化,用于常见的深度学习操作,如卷积、池化、归一化、全连接等。这些操作是深度神经网络中的基本构建块,因此通过在 GPU 上高效执行它们,cuDNN 可以显著提高深度学习模型的性能。
以下是 cuDNN 的一些关键特性和优点:

  1. 高性能计算: cuDNN 使用了一系列高度优化的算法和数据结构,以确保在 GPU 上执行深度学习操作时能够获得最佳性能。
  2. 硬件加速: cuDNN 充分利用了 NVIDIA GPU 的硬件功能,如深度核心(Tensor Cores)和 CUDA 核心,以实现高效的矩阵计算和卷积运算。
  3. 跨平台支持: cuDNN 支持多个操作系统和 GPU 架构,因此可以在不同的硬件平台上使用,包括桌面 GPU 和数据中心 GPU。
  4. 深度学习框架集成: 大多数流行的深度学习框架,如 TensorFlow、PyTorch 和 Caffe,都集成了 cuDNN,因此您可以轻松地在这些框架中使用 cuDNN 提供的功能。
  5. 简化开发过程: cuDNN 的存在使深度学习开发者能够更专注于模型的设计和训练,而无需过多关注底层的 GPU 加速细节。
    总之,cuDNN 是深度学习领域中的一个重要工具,它使深度学习模型的训练和推断过程更加高效,同时也提供了一些性能优化和便利性的功能,有助于加速深度学习应用的开发和部署。

Cuda和Cudnn 安装教程

Cuda和Cudnn 安装教程,需要先安装Cuda才能够使用安装GPU版本的PyTorch,本文详细介绍Cuda和Cudnn的安装步骤,环境配置和测试方法。笔者在Win10进行安装操作,Cuda采用版本10.1,Cudnn 采用版本v7.6.4.38。

Cuda 安装
首先需要确认你的电脑显卡已经安装好了驱动并且是支持Cuda的,从官网https://developer.nvidia.com/cuda-downloads下载,我选择的版本是cuda_10.1.243_426.00_win10.exe

在这里插入图片描述
安装的时候建议选择自定义而不是“精简”(从下面的英文解释可以看出,其实这里的精简写成完整应该更贴切,他会安装所有组件并覆盖现有驱动,然而我并不想安装全家桶,何况我的官方显卡驱动比他的新)。

在这里插入图片描述
如下图所示,我们只需选择CUDA项(默认是全选的),这一步之后,会询问这些组件的安装路径,可以直接使用C盘的默认位置,当然我们可以可以自己定义(请记住这些安装路径,后面配置环境变量需要用到)。
在这里插入图片描述
在这里插入图片描述

环境变量和测试

检查系统变量
在这里插入图片描述
在这里插入图片描述
添加环境变量后如下图所示:
在这里插入图片描述
可以通过如下指令测试安装和配置是否成功:

nvcc --version
nvcc -V

输出结果如下所示:
在这里插入图片描述
显示cuda版本号10.1 V10.1.243,说明安装成功!

Cudnn 安装

官网下载:https://developer.nvidia.com/rdp/cudnn-archive

在这里插入图片描述
解压文件夹,显示内容如下:
在这里插入图片描述
将解压文件夹cuda目录下的文件分别复制到cuda安装目录下的对应文件夹下面,如下所示:
在这里插入图片描述
恭喜你,安装完成!!!

Anaconda 安装

1、Anaconda官网下载:https://www.anaconda.com 按需要选择版本下载
在这里插入图片描述
2、路径根据自己实际选择,点击“Next”,直到安装完成
在这里插入图片描述
3、配置环境变量
进入系统环境变量点击 Path 添加如下路径(视自己安装路径情况而定):

E:\Anaconda
E:\Anaconda\Scripts
E:\Anaconda\Library\bin
E:\Anaconda\Library\mingw-w64\bin

4、测试是否安装成功
Win+R进入cmd,输入conda --version,显示如下则安装成功
在这里插入图片描述

Pytorch安装

(一)GPU版本安装
方法一
在线安装
1、打开Anaconda Powershell Prompt,输入conda info --envs,查看安装的环境

在这里插入图片描述
2、进入Pytorch官网:https://pytorch.org/,找到合适自己电脑的版本
https://download.pytorch.org/whl/torch/

在这里插入图片描述
3、复制Run this Command:conda install pytorch torchvision torchaudio pytorch-cuda=11.6 -c pytorch -c nvidia(视自己情况而定)到Anaconda Powershell Prompt 确认下载在这里插入图片描述

4、测试是否安装成功
在Anaconda Powershell Prompt依次输入

python
import torch
torch.__version__
torch.cuda.is_available()

显示如下即安装成功

在这里插入图片描述
Torch和Torchvision的版本对应
在这里插入图片描述
到Pytorch离线下载资源网站下载对应版本(CPU版本和GPU版本):https://download.pytorch.org/whl/torch_stable.html

在这里插入图片描述
下载好后复制并切换到Anaconda所在目录,使用“pip”命令安装
pip install “文件名"

在这里插入图片描述
在这里插入图片描述
测试是否安装成功
结果与在线安装测试结果相同
(二)CPU版本安装
参考博主:https://blog.csdn.net/weixin_44904136/article/details/123285884

添加清华源:
在cmd下执行如下语句

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/win-64/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/win-64/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/win-64/
conda config --set show_channel_urls yes
conda config --set ssl_verify false

在Anaconda安装文件下找到.condarc文件(一般在C盘用户目录下)

在这里插入图片描述
恢复默认源:
conda config --remove-key channels

Pytorch实现第一个案例

准备数据

Income1.csv

"","Education","Income"
"1",10,26.6588387834389
"2",10.4013377926421,27.3064353457772
"3",10.8428093645485,22.1324101716143
"4",11.2441471571906,21.1698405046065
"5",11.6454849498328,15.1926335164307
"6",12.0869565217391,26.3989510407284
"7",12.4882943143813,17.435306578572
"8",12.8896321070234,25.5078852305278
"9",13.2909698996656,36.884594694235
"10",13.7324414715719,39.666108747637
# 获取数据,使用Pandas库
import numpy as np
import pandas as pd
import torch#读取csv
data = pd.read_csv('./datasets/Income1.csv')data.head()

在这里插入图片描述

# print(data.Education,data.Income)
import matplotlib.pyplot as plt
#绘制散点,看看教程支出与收入之间的关系
plt.scatter(data.Education,data.Income)
# 设置x轴标签
plt.xlabel('Eduction')
# 设置y轴标签
plt.ylabel('Income')plt.show()

在这里插入图片描述

#将pandas的数据转为pytorch的数据(张量)# data.Education.to_numpy().reshape(-1,1)
X = torch.from_numpy(data.Education.to_numpy().reshape(-1, 1)).type(torch.FloatTensor)# torch.from_numpy
Y = torch.from_numpy(data.Income.to_numpy().reshape(-1, 1)).type(torch.FloatTensor)# 导入专门用于搭建神经网络的模型
from torch import nnclass EasyModel(nn.Module):#初始化模型,实现1层线性网络def __init__(self):#调用父类进行初始化super(EasyModel,self).__init__()#定义中间的一层线性层,输入的维度是1,输出的维度也是1self.linear = nn.Linear(in_features=1,out_features=1)#定义1个前向传播函数,告诉模型如何一层一层往下输出的逻辑def forward(self,inputs):#设置将输入的教育支出,输入到线形层logits = self.linear(inputs)return logits#实例化1个模型,用于训练和预测
model = EasyModel()#定义均方误差为损失函数
loss_fn = nn.MSELoss()
#定义优化器,设置模型参数进来,让优化器修改模型参数,使得误差最小。lr,学习率,调节学习速度快慢
opt = torch.optim.SGD(model.parameters(),lr=0.0001)#训练for epoch in range(5000):for x,y in zip(X,Y): # Python中的zip函数可以将多个可迭代对象打包成一个元组序列,常用于数据处理和数据分析中。zip函数的作用是将多个列表、元组或其他可迭代对象中对应的元素打包成一个元组,然后返回一个由这些元组组成的列表。#先让模型做预测y_pred = model(x)# 预测了,看看误差咋样,计算损失函数loss = loss_fn(y,y_pred)#复原,梯度归零opt.zero_grad()# 根据误差,倒推应该怎么修改参数,反向传播loss.backward()# 使用优化器,更新参数opt.step()#预测结果
#detach用于前向传播计算
Y_pred = model(X).detach()
Y_pred = Y_pred.numpy()#在绘制散掉图
plt.scatter(data.Education,data.Income,c='r',label='real data')
plt.scatter(data.Education,Y_pred,c='g',label='pred data')# 设置x轴标签
plt.xlabel('Eduction')
# 设置y轴标签
plt.ylabel('Income')plt.show()       

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/53053.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从源码到产品:视频美颜SDK与直播美颜插件的开发详解

开发一款高效的视频美颜SDK与直播美颜插件,不仅需要深入理解图像处理技术,还需要考虑到性能优化、跨平台支持等多个方面的挑战。接下来,笔者将从源码开发的角度,详解视频美颜SDK与直播美颜插件的开发过程。 一、视频美颜SDK的核心…

仿华为车机功能之--修改Launcher3,实现横向滑动桌面空白处切换壁纸

本功能基于Android13 Launcher3 需求:模仿华为问界车机,实现横向滑动桌面空白处,切换壁纸功能(本质只是切换背景,没有切换壁纸)。 实现效果: 实现思路: 第一步首先得增加手势识别 第二步切换底图,不切换壁纸是因为切换壁纸动作太大,需要调用到WallpaperManager,耗…

asp.net core在win上的发布和部署

一、asp.net core两种发布方式 1、两个发布方式——【框架依赖发布】和【独立发布】 2、两种发布方式的差别 二、发布的详细过程 1、【生成】->【发布】 2、框架依赖发布 设置发布参数,然后进行发布 发布好的文件,把它们放到一个新的目录文件夹里 …

浏览器播放RTSP流,支持H264、H265等格式,支持IE、Chrome等浏览器

目录 背景 解决方案 效果 代码 前端代码 后端代码 下载 背景 项目中需要在浏览器中播放RTSP流,实在是不想折腾ActiveX控件 1、麻烦(开发麻烦、使用时设置也麻烦) 2、非IE浏览器不兼容 解决方案 使用OpenCvSharpNancy写一个解码服…

中仕公考怎么样?省考笔试成绩什么时候出?

根据往年的经验,省考笔试的成绩通常在考试后的大约一个月左右公布,但具体日期会根据各省份的公告而有所差异,不同省份具体时间不同,以2024年的为例: 广东省预计于笔试后约30天发布、山东省预计于笔试后约35天发布、浙…

Python计算机视觉四章-照相机模型与增强现实

目录 4.1针孔照相机模型 4.1.1照相机矩阵 4.1.2 三维点的投影 4.1.3 照相机矩阵的分解 4.1.4 计算照相机中心 4.2 照相机标定 4.2.1 一个简单的标定方法 4.3 以平面和标记物进行姿态估计 4.4 增强现实 4.4.1 PyGame和PyOpenGL 4.4.2 从照相机矩阵到OpenGL格式 4…

2024结构振动与智能控制国际学术会议(ICSVIC 2024)

文章目录 一、会议详情二、重要信息三、大会介绍四、出席嘉宾五、征稿主题六、咨询 一、会议详情 二、重要信息 大会官网:https://ais.cn/u/vEbMBz提交检索:EI Compendex、IEEE Xplore、Scopus 三、大会介绍 四、出席嘉宾 五、征稿主题 如想"投稿…

Day 1 : 数据结构

引入 以张三为例:CEF不能同时举办。 数据的逻辑结构 数据结构是什么 研究计算机数据之间的关系 逻辑结构和存储结构及其操作 基本概念 数据 数据元素 逻辑结构 按前趋和后继数将逻辑结构分为:线性结构和非线性结构。 即:找前…

Activity的生命周期

目录 前言 Activity的生命周期 五种状态 生命周期相关方法 前言 Android中有着四大组件:Activity、Service、ContentProvider和BroadcastReceiver。本篇我们主要讲解的是Activity组件,它是安卓提供给用户与手机之间进行交互的界面 控件,那…

基于SSM的咖啡馆管理系统

基于SSM的咖啡馆管理系统的设计与实现~ 开发语言:Java数据库:MySQL技术:SpringSpringMVCMyBatisJSP工具:IDEA/Ecilpse、Navicat、Maven 系统展示 前台界面 后台界面 摘要 在当前这个信息爆炸的时代,众多行业正经历着…

win10环境下gvim离线配置插件的一些补充

0 总述 在上一篇博客,即《Windows系统下使用gvim配置LaTeX快速书写环境》一文中,本小白试图模仿神级人物Gilles Castel,打造vim下的 LaTeX \LaTeX LATE​X书写环境。实话实说,东施效颦了。虽不至于一无所得,但也仅仅算…

UE5开发——射击武器类拾取

整体框架: 拾取武器 要在 Unreal Engine 5 (UE5) 中实现一个按 E 键拾取武器的功能,您可以遵循以下步骤: ### 步骤 1: 创建拾取物品的基础类 1. 在 Content Browser 中创建一个新的 C 类,继承自 AActor 或者 AStaticMeshActor。…

服务器间进行文件传输-SFTPSCP一篇搞定

1.简单介绍一下 在一些特殊场景,两台服务器之间需要进行文件传输的时候,或许我们会想到FTP,这也是我们常见的实现方式,但是如果我们不能操作远程服务器,无法判断远程服务器是否安装了FTP呢,众所周知&#…

在Web服务应用中,如何编程使用Redis的缓存功能?包括缓存页面内容、缓存数据库查询结果、用户会话信息等代码分享

目录 一、概述 二、redis介绍 1、简介 2、Redis作为缓存的原理 (1)内存存储 (2)数据结构 (3)工作原理 3、Redis作为缓存的作用 三、redis缓存页面内容 1、作用 2、实现方法 3、示例代码&#x…

原型与原型链

在JavaScript中,原型(prototype)和原型链(prototype chain)是理解对象如何继承属性和方法的关键概念。 原型 每一个对象(函数也是对象)都有一个特殊的属性叫做原型(prototype&…

k3s中使用GPU资源

前提是已经安装了nvidia驱动 一、安装nvidia-container-toolkit(推荐) #复制一份docker配置文件,以防被覆盖 cp /etc/docker/daemon.json /etc/docker/daemon.json.bak #安装NVIDIA Container Toolkitapt-get install nvidia-container-toolkit二、配置…

Linux和Unix的区别及为什么鸿蒙系统不用Unix的原因

目录 Linux是什么? Unix是什么? 他们的区别: 鸿蒙系统介绍及鸿蒙系统不用Unix的原因 Linux是什么? Linux的历史可以追溯到1991年,由芬兰的计算机科学家林纳斯托瓦兹(Linus Torvalds)为了学习操作系统的工作原理而…

海绵城市雨水监测系统

海绵城市雨水监测系统主要有:数据采集、无线数据传输、后台云服务、终端平台显示等部分组成。系统通过前端数据采集水质(ss\cod\浊度、PH等)、雨水雨量、流量、水位、土壤湿度、气象等数据。通过无线数据传输通讯(4G、5G、以太网、…

小柴带你学AutoSar系列三、标准和规范篇(3)ModeManagement

目录 ModeManagementGuide 2 Overall mechanisms and concepts 2.1 Declaration of modes 2.2 Mode managers and mode users 2.3 Modes in the RTE 2.4 Modes in the Basic Software Scheduler 2.5 Communication of modes 3 Configuration of the Basic Software Mod…

华为云征文|部署个人博客管理系统 Ghost

华为云征文|部署个人博客管理系统 Ghost 一、Flexus云服务器X实例介绍1.1 云服务器介绍1.2 应用场景1.3 对比普通ECS 二、Flexus云服务器X实例配置2.1 重置密码2.2 服务器连接2.3 安全组配置 三、部署 Ghost3.1 Ghost 介绍3.2 Docker 环境搭建3.3 Ghost 部署3.4 Gho…