FPGA DNA 获取 DNA_PORT

FPGA DNA

DNA 是 FPGA 芯片的唯一标识, FPGA 都有一个独特的 ID ,也就是 Device DNA ,这个 ID 相当于我们的身份证,在 FPGA 芯片生产的时候就已经固定在芯片的 eFuse 寄存器中,具有不可修改的属性。在 xilinx 7series 和 7series 以前,ID 都是 57bit
的,但是在 Xilinx 的 Ultraslace 架构下是 96bit 。

The 7 series FPGA contains an embedded, 64-bit device identifier which is used to provide a 57-bit Device DNA value. The identifier is nonvolatile, permanently programmed by Xilinx into the FPGA, and is unchangeable making it tamper resistant. Each device is programmed with a 57-bit DNA value that is most often unique. However, up to 32 devices within the family can contain the same DNA value. The JTAG FUSE_DNA command can be used to read the entire 64-bit value that is always unique. Device DNA is
composed of bits 0 to 56 of the 64-bit FUSE_DNA value. External applications can access the Device DNA or FUSE_DNA values through the JTAG port, and FPGA designs can access the DNA only through a Device DNA Access Port (DNA_PORT).

意思是说JTAG可以拿到57bit的DNA_PORT和64 bit的FUZE_DNA,DNA_PORT值最多会有32个器件有相同的值,FUZE_DNA就是唯一的。而如果要通过FPGA资源区读取,只能用DNA_PORT,也就是说你写逻辑的话得用57bit的DNA_PORT。

如何读取

JTAG

可以使用 JTAG 查看当前 FPGA 的 DNA 码。注意DNA_PORT更加常用,因为这个值通过逻辑也可以读出。

其中 FUSE_DNA 即为我们要获取的 DNA 编码信息,copy 即可。

代码获取

调用DNA_PORT实现。https://fpga.eetrend.com/files-eetrend-xilinx/download/201408/7594-13761-ug4707seriesconfig.pdf

         DNA_PORT #(.SIM_DNA_VALUE(57'h123456789abcdef)  // Specifies a sample 57-bit DNA value for simulation)DNA_PORT_inst (.DOUT(dna_dout),   // 1-bit output: DNA output data..CLK(sys_clk),     // 1-bit input: Clock input..DIN(1'b0),     // 1-bit input: User data input pin..READ(dna_read),   // 1-bit input: Active high load DNA, active low read input..SHIFT(dna_shift)  // 1-bit input: Active high shift enable input.);

使用DNA_PORT获取的DNA和JTAG读取的DNA对比

参考
AMD Customer Community JTAG 获取 DNA

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/49174.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于java 精品课程教学网站的设计与实现

1 引言 当今时代是飞速发展的信息时代。在各行各业中离不开信息处理,计算机被广泛应用于B/S系统环境。计算机的好处在于它能够进行信息管理。使用计算机进行信息控制,不仅提高了工作效率,而且大大的提高了安全性。 对于复杂的信息管理&…

算法——滑动窗口(day7)

904.水果成篮 904. 水果成篮 - 力扣(LeetCode) 题目解析: 根据题意我们可以看出给了我们两个篮子说明我们在开始采摘到结束的过程中只能有两种水果的种类,又要求让我们返回收集水果的最大数目,这不难让我们联想到题目…

Stateflow中的状态转换表

状态转换表是表达顺序模态逻辑的另一种方式。不要在Stateflow图表中以图形方式绘制状态和转换,而是使用状态转换表以表格格式表示模态逻辑。 使用状态转换表的好处包括: 易于对类列车状态机进行建模,其中模态逻辑涉及从一个状态到其邻居的转换…

软件测试09 自动化测试技术(Selenium)

重点/难点 重点:理解自动化测试的原理及其流程难点:Selinum自动化测试工具的使用 目录 系统测试 什么是系统测试什么是功能测试什么是性能测试常见的性能指标有哪些 自动化测试概述 测试面临的问题 测试用例数量增多,工作量增大&#xff…

ROS2入门到精通—— 1-7 ROS2实战:行为树详解

1 行为树简介 行为树:一种用于描述和执行复杂系统中行为的图形化结构,Nav2中,行为树用于定义机器人导航的决策和行为 (1)一个名为 "tick "的信号被发送到树的根部,并在树中传播,直到它…

七天打造一套量化交易系统:Day2-量化交易策略基本模型及要点

七天打造一套量化交易系统:Day2-量化交易策略基本模型及要点 前期回顾趋势型策略模型原理收益分布重点:什么因素能改进策略(截断亏损,让利润奔跑)要点总结 均值回复型策略模型原理收益分布重点:避免大额亏损…

智能优化算法之灰狼优化算法(GWO)

智能优化算法是一类基于自然界中生物、物理或社会现象的优化技术。这些算法通过模拟自然界中的一些智能行为,如遗传学、蚁群觅食、粒子群体运动等,来解决复杂的优化问题。智能优化算法广泛应用于各种工程和科学领域,因其具有全局搜索能力、鲁…

实验三 FPGA使用Verilog HDL设计加法器

实验目的 掌握使用Vivado软件进行设计、综合、仿真、布线的方法。掌握FPGA程序的下载方法。掌握使用Verilog HDL设计加法器的方法。 实验要求 采用Verilog HDL语言设计加法器,实现两个4位数的相加运算,并将结果通过LED灯或数码管显示出来。对设计进行综…

Git的使用教程

仓库分区 Git本地有三个工作区域:工作目录(Working Directory),暂存区(Stage/Index),资源库(Repository或Git Directory)。如果再加上远程的git仓库(Remove Directory)就…

【virtuoso】ADE XL并行仿真提高仿真速度

进行扫参的时候,可以使用ADE XL中并行仿真,来同时仿真多个点,进而提高仿真速度 设置步骤: 打开ADE XL,设置好仿真参数setup --> job Setup设置仿真个数

鸿蒙OS物联网创新应用实训解决方案

摘要: 随着物联网技术的飞速发展,各种智能设备和传感器正在以前所未有的速度融入我们的日常生活。华为推出的鸿蒙操作系统(HarmonyOS)作为一款面向全场景、多设备、无缝连接的分布式操作系统,为物联网领域带来了全新的…

基于关键字驱动设计Web UI自动化测试框架!

引言 在自动化测试领域,关键字驱动测试(Keyword-Driven Testing, KDT)是一种高效且灵活的方法,它通过抽象测试用例中的操作为关键字,实现了测试用例与测试代码的分离,从而提高了测试脚本的可维护性和可扩展…

揭秘!电源炼成记:从基础原理到高端设计的全面解析

文章目录 初始构想:需求驱动设计原理探索:选择适合的拓扑结构精细设计:元器件选型与布局环路稳定:控制策略与补偿网络严格测试:验证与优化持续改进:创新与技术迭代《硬件十万个为什么(电源是怎样…

arinc664总线协议

本篇目录: 1、AFDX总线协议简介2、ARINC429数据总线简介3、波音777飞机飞行技术问题4、航空电子理论基础知识5、航空专用积体电路详细资料大全 AFDX总线协议简介 (1)AFDX的传输速率高:带宽100MHZ,远远高于其他的类型…

昇思25天学习打卡营第18天|文本解码原理--以MindNLP为例

文章目录 昇思MindSpore应用实践1、自回归语言模型RNN网络 2、文本解码原理--以MindNLP为例Greedy searchBeam searchRepeat problemTopK sample Refernence 昇思MindSpore应用实践 本系列文章主要用于记录昇思25天学习打卡营的学习心得。 1、自回归语言模型 自回归语言模型…

【JVM基础04】——组成-什么是虚拟机栈?

目录 1- 引言:虚拟机栈1-1 虚拟机栈是什么?(What)1-2 为什么用虚拟机栈?虚拟机栈的作用 (Why) 2- ⭐核心:栈的常见问题(How)2-1 方法内的局部变量是否线程安全?线程不安全的局部变量 2-2 什么情况会导致栈内存溢出&…

深入Mysql-03-MySQL 表的约束与数据库设计

文章目录 数据库约束的概述约束种类主键约束唯一约束非空约束默认值外键约束 表与表之间的关系数据库设计 数据库约束的概述 对表中的数据进行限制,保证数据的正确性、有效性和完整性。一个表如果添加了约束,不正确的数据将无法插入到表中。 约束种类 …

go-kratos 学习笔记(3) google buf 管理proto

google buf 管理proto,以及从新归档文件的目录结构 什么是 BSR? BSR 将 Protobuf 文件作为版本化模块进行存储和管理,以便个人和组织可以轻松使用和发布他们的 API。 BSR 带有可浏览的 UI、依赖项管理、API 验证、版本控制、生成的文档以及…

稳居中科院2区的SCIEI双检索期刊,听说一投就中!

IEEE TRANSACTIONS ON ELECTRON DEVICES,中科院2区,JCR Q2, SCI&EI双检索期刊,年发文量在1000篇左右,且大有继续扩刊的走向。有投稿经验的作者反馈,比较容易被录用。 期刊信息 IEEE TRANSACTIONS ON ELECTRON DE…

Python 机器学习求解 PDE 学习项目——PINN 求解一维 Poisson 方程

本文使用 TensorFlow 1.15 环境搭建深度神经网络(PINN)求解一维 Poisson 方程: − Δ u f in Ω , u 0 on Γ : ∂ Ω . \begin{align} -\Delta u & f \quad & \text{in } \Omega,\\ u & 0 \quad & \text{on } \Gamma:\partial \Om…