【Leetcode】十六、深度优先搜索 宽度优先搜索 :二叉树的层序遍历

文章目录

  • 1、深度优先搜索算法
  • 2、宽度优先搜索算法
  • 3、leetcode102:二叉树的层序遍历
  • 4、leetcode107:二叉树的层序遍历II
  • 5、leetcode938:二叉搜索树的范围和

1、深度优先搜索算法

深度优先搜索,即DFS,从root节点开始,尽可能深的搜索每一个分支。把一个分支的结果搜索完以后,再去看下一个分支。

在这里插入图片描述
应用场景:

  • 二叉树搜索
  • 图搜索

例子:走迷宫,从起点开始,一直走到终点或者撞墙后(这就是所谓的 “深度” 优先),回到起点重新开始,可以找到如下两条路(红色箭头和黄色箭头)

在这里插入图片描述

用深度优先来看前面回溯中提到的子集求法:从起点开始,首先是一个空集。往下有1、2、3三条路可以走
在这里插入图片描述

先逮着1开始走,1符号要求,放入结果集,接着往下走,[1,2],也符合要求,放入结果集,接着往下走,[1,2,3],也符合要求,放入结果集,再往下,就到底了。换另一条路走。

2、宽度优先搜索算法

宽度(广度)优先搜索,即BFS,和DFS不同,BFS是一层一层的处理。BFS一般搭配队列使用。

在这里插入图片描述

BFS和DFS的对比:

在这里插入图片描述

以从上到下、从左到右遍历以下二叉树为例,采用宽度优先,搭配一个队列,先进先出,计数count = 0。从root开始,root入队,count = 1,出队,同时root的左、右节点入队,并维护count。当count = 0时,说明遍历结束。

在这里插入图片描述

即node.val出队,node.left和node.right入队。详细:

  • root节点1入队,count = 1
  • 根据count,从队列中pop元素,得到root节点,把其值val放入结果集,并把其左右孩子加进来。结果集array = [1]
  • 此时,队列中存着2、3这两个节点,count = 2
  • 继续根据count = 2来pop两次,并加入元素的左右孩子
  • pop出元素2,加入其左右节点4、5,count = 3,结果集array = [1,2]
  • pop出元素3,加入其左右节点6、7,count = 4,结果集array = [1,2,3]
  • pop出元素4,count = 3,array = [1,2,3,4]
  • pop出元素7,count = 0,array = [1,2,3,4,5,6,7]

3、leetcode102:二叉树的层序遍历

和上面分析的BFS遍历二叉树不一样,这题要求输出的结果是分层的,考虑一层一层的处理,并把每层的处理完的结果加入最终的结果集。

在这里插入图片描述

外层while执行一次,代表处理了二叉树的一层。内层while执行一次,代表处理这层的每个元素(自身出队、左右节点的值入队)

public class P102 {public List<List<Integer>> levelOrder(TreeNode root) {List<List<Integer>> result = new ArrayList<>();if (null == root) {return result;}Queue<TreeNode> queue = new LinkedList<>();queue.add(root);while (queue.size() > 0) {// 存每层的结果List<Integer> list = new ArrayList<>();// 每处理完一层,队列的长度,即是下一层元素的数量int count = queue.size();// 处理每一层的元素,弹出这一层的每个元素,并把每个元素的左右节点加进去while (count > 0) {TreeNode node = queue.poll();list.add(node.val);count--;// 弹出的元素的左右孩子节点的值入队if (node.left != null) {queue.add(node.left);}if (node.right != null) {queue.add(node.right);}}// 一层处理结束,把结果加到结果集里,注意别直接add上面的list,防止引用传递,用copy值传递result.add(new ArrayList<>(list));}return result;}
}

这题很明显的有”层“的概念,用BFS很合适,但DFS也能解。
在这里插入图片描述

从root开始,一条路往下走,和前面一层层的取不一样了,DFS解时,每层递归有个level,level = 0,即root节点所在的那层,放到结果集result的0号位置,往下9,放到result的1号元素里面

public class P102 {public List<List<Integer>> levelOrderByDfs(TreeNode root) {List<List<Integer>> result = new ArrayList<>();if (null == root) {return result;}dfs(root, result, 0);return result;}/*** 深度优先** @param node   节点* @param result 最终的结果集* @param level  二叉树中当前的层级*/public static void dfs(TreeNode node, List<List<Integer>> result, int level) {// 终止条件if (node == null) {return;}// 如果当前层级到了2,那结果集里应该初始化出两个元素,每层的结果存一个结果集的元素里if (level > result.size() - 1) {result.add(new ArrayList<>());}// 层级所在结果集的位置上,加入这个元素result.get(level).add(node.val);if (node.left != null) {dfs(node.left, result, level + 1);}if (node.right != null) {dfs(node.right, result, level + 1);}}
}

4、leetcode107:二叉树的层序遍历II

在这里插入图片描述

和前面102题不同的是,要求从叶子节点开始一层层的遍历,输出的顺序刚好相反,当然,可以在102的代码的末尾,直接reverse翻转答案,然后return。

说起翻转,也可自己用栈实现,但除了翻转,有更优实现:结果集result用一个链表,依旧从root节点那一层开始,从上往下一层层处理,但每层的结果,加到result的头部,如此,从上到下遍历完每层后,直接不用翻转就是题解。

Java中,List里面底层是链表的,就不能用ArrayList(数组),而是LinkedList:

public class P107 {public List<List<Integer>> levelOrderBottom(TreeNode root) {// 用链表对应的LinkedListList<List<Integer>> result = new LinkedList<>();if (null == root) {return result;}// 队列Queue<TreeNode> queue = new LinkedList<>();queue.add(root);while (queue.size() > 0) {int count = queue.size();List<Integer> levelList = new ArrayList<>();for (int i = 0; i < count; i++) {TreeNode node = queue.poll();levelList.add(node.val);if (node.left != null) {queue.add(node.left);}if (node.right != null) {queue.add(node.right);}}// 注意这里,每次add的下标是0,即链表队首,这样第二层的结果就会排到第一层result.add(0, levelList);}return result;}
}

以上实现,注意链表的巧妙之处:

在这里插入图片描述

这题要不用BFS,而DFS,那最后就得reverse翻转一下结果集了。虽然BFS能解的,DFS也能解,但这种层级的遍历,BFS更好用。

最后,以上用到的TreeNode:

public class TreeNode {int val;TreeNode left;TreeNode right;TreeNode() {}TreeNode(int val) {this.val = val;}TreeNode(int val, TreeNode left, TreeNode right) {this.val = val;this.left = left;this.right = right;}
}

5、leetcode938:二叉搜索树的范围和

第一反应是,遍历二叉树,判断每个元素在范围就累加。那应该想到BFS,除了BFS,还有别的实现:不管是前序、中序、后序遍历,一个树,最后肯定会被拆解成一个个只有三个节点的小块,即递归。
在这里插入图片描述

解法一:普通递归

在这里插入图片描述
从root开始,一分为二的看,最终结果 = 左 + 中 + 右,左边有子树的话,继续左 + 中 + 右,纯递归,递归终止的条件为,节点没有子节点了。代码实现:

public class P938 {public int rangeSumBST(TreeNode root, int low, int high) {if (null == root) {return 0;}// 左边那一块,新的root就是root.leftint leftSum = rangeSumBST(root.left, low, high);// 右边那一块,新的root就是root.rightint rightSum = rangeSumBST(root.right, low, high);int result = leftSum + rightSum;// 中间节点if (low <= root.val && root.val <= high) {result = result + root.val;}return result;}
}

以上面二叉树为例:

- 第一次递归:root=10, left=5,right=15
- 第二次递归:root=上一层的root.left=5,left=3,right=7
- 第三次递归:root=上一层的root.left=3,left=null,right=null
- 第四次递归:root=上一层的root.left=null,终止递归,回退,返回0

解法二:BFS

一层层的来,平铺扫荡,每一个出队的元素,判断是否在范围内,是则累加

在这里插入图片描述

这题的BFS,和BFS概念分析时一样,都不用像前两道题一样分层,一层while就行:

public class P938 {public int rangeSumBSTByBFS(TreeNode root, int low, int high) {if (null == root) {return 0;}int result = 0;Queue<TreeNode> queue = new LinkedList<>();queue.add(root);while (!queue.isEmpty()) {TreeNode node = queue.poll();if (node.val >= low && node.val <= high) {result = result + node.val;}// 左右节点处理if (node.left != null) {queue.add(node.left);}if (node.right != null) {queue.add(node.right);}}return result;}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/48347.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Go语言之参数传递

文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 修改参数 假设你定义了一个函数&#xff0c;并在函数里对参数进行…

【已解决】Linux(Centos7)中yum过程域名无法解析问题

问题原因 Linux中yum过程域名无法解析问题&#xff0c;但是ping 域名时联通的&#xff08;即DNS没问题&#xff09;&#xff0c;所以初步判断是镜像源的问题。 解决方法&#xff08;Centos7&#xff09; 1、备份/etc/yum.repos.d/CentOS-Base.repo 2、下载CentOS-Base.repo…

【Linux】Linux的基本使用

一.Linux的背景知识. 1.1什么是Linux Linux是一种开源的类Unix操作系统内核. 和Windows是" 并列 "的关系. 1.2Linux的发行版本. Linux 严格意义来说只是一个 “操作系统内核”.一个完整的操作系统 操作系统内核 配套的应用程序. 由于 Linux 是一个完全开源免费…

FPGA:二选一选择器

1、需求 使用XILINX的XC7A35TFFG484-2开发板&#xff0c;完成二选一选择器的设计。 2、分析 二选一选择器如下所示&#xff1a; 观察可知有三个输入端&#xff0c;一个输出端&#xff0c;其逻辑原理为&#xff1a;当sel为高电平时&#xff0c;outa&#xff0c;当sel为低电平…

十二、数组(2)

1.冒泡排序数组&#xff08;升序&#xff09; 冒泡排序&#xff1a;将一个整型数组排序&#xff08;升序&#xff09; 例&#xff1a; 10 9 8 7 6 5 4 3 2 1 9 10 8 7 6 …

第十四届蓝桥杯省赛C++C组C题【三国游戏】题解(AC)

解题思路 由于三种国家都有获胜的可能&#xff0c;所以我们需要分别枚举 X , Y , Z X,Y,Z X,Y,Z 获胜的情况。 设 X X X 获胜&#xff0c;那么对于第 i i i 个事件的贡献为 a [ i ] − ( b [ i ] c [ i ] ) a[i]-(b[i]c[i]) a[i]−(b[i]c[i])&#xff0c;根据贪心的策略…

【银河麒麟服务器操作系统】java进程oom现象分析及处理建议

了解银河麒麟操作系统更多全新产品&#xff0c;请点击访问麒麟软件产品专区&#xff1a;https://product.kylinos.cn 现象描述 某服务器系统升级内核至4.19.90-25.22.v2101版本后仍会触发oom导致java进程被kill。 现象分析 oom现象分析 系统messages日志分析&#xff0c;故…

数据编织 Data Fabric:解决“数据孤岛”的新思路

一个不争的事实是&#xff0c;企业内部数据孤岛的形成&#xff0c;根因在于业务发展的复杂性与技术迭代的快速性导致。具体而言&#xff0c;随着企业业务快速增长&#xff0c;如新生产线的引入或外部公司的并购&#xff0c;这些活动往往伴随着新系统上线与独立数据体系的融入&a…

【safari】react在safari浏览器中,遇到异步时间差的问题,导致状态没有及时更新到state,引起传参错误。如何解决

在safari浏览器中&#xff0c;可能会遇到异步时间差的问题&#xff0c;导致状态没有及时更新到state&#xff0c;引起传参错误。 PS&#xff1a;由于useState是一个普通的函数&#xff0c; 定义为() > void;因此此处不能用await/async替代setTimeout&#xff0c;只能用在返…

网络安全行业最大的敌人是自己

在危机四伏的数字丛林时代&#xff0c;网络安全行业需要跳出资本和市场的博弈陷阱&#xff0c;通过拯救自己来拯救所有人。当然&#xff0c;政府和资本也应该意识到这一点。 在当今这个数字化时代&#xff0c;网络安全的重要性与日俱增。然而&#xff0c;尽管政府和企业不断强调…

【vue+el-table】实现表尾合计行分两行显示,一行显示勾选项之和,一行显示合计,已实现,具体思路解析

效果图&#xff1a; 思路解析&#xff1a; 首先进行了el-table列表的组件封装&#xff0c;很多参数是传进来的。如果是普通的列表&#xff0c;相关参数直接定义就行 1、使用el-table的summary-method处理表尾行 &#xff08;1&#xff09;定义summaryIndex用于指定合计在哪一列…

vue学习笔记(十一)——开发心得(axios的封装、promise细节、vue-router开发中的使用)

1. axios的网络请求的封装 1.1 为什么要封装api? 代码分层&#xff0c;便于以后的修改&#xff0c;无需触碰逻辑页面 目标&#xff1a; 网络请求&#xff0c;不散落在各个逻辑页面里&#xff0c;封装起来方便以后修改 1.2 封装api步骤 ① 在项目 src 下新建目录 utlis &am…

VTD学习笔记(一)-启动vtd、基本界面和按钮

写在前面&#xff1a;真快啊&#xff0c;眨眼就毕业上班了&#xff0c;岗位也是做仿真&#xff0c;看来以后就是一直做仿真了&#xff0c;再见了定位~。公司使用的是vtd&#xff0c;看资料是一个很庞大的自动驾驶仿真软件&#xff0c;囊括了车辆动力学到传感器仿真&#xff0c;…

Python list comprehension (列表推导式 - 列表解析式 - 列表生成式)

Python list comprehension {列表推导式 - 列表解析式 - 列表生成式} 1. Python list comprehension (列表推导式 - 列表解析式 - 列表生成式)2. Example3. ExampleReferences Python 中的列表解析式并不是用来解决全新的问题&#xff0c;只是为解决已有问题提供新的语法。 列…

iPad型号数据解析:了解不同iPad型号的连接和扩展性能力

iPad是一款非常受欢迎的平板电脑&#xff0c;拥有多种型号和规格可供选择。在本篇文章中&#xff0c;我们将深入研究不同iPad型号的连接和扩展性能。数据源来自于挖数据平台&#xff0c;该平台提供了全面的iPad型号数据&#xff0c;共计1485个型号。 首先&#xff0c;让我们来…

【D3.js in Action 3 精译_020】2.6 用 D3 设置与修改元素样式 + 名人专访(Nadieh Bremer)+ 2.7 本章小结

当前内容所在位置 第一部分 D3.js 基础知识 第一章 D3.js 简介&#xff08;已完结&#xff09; 1.1 何为 D3.js&#xff1f;1.2 D3 生态系统——入门须知1.3 数据可视化最佳实践&#xff08;上&#xff09;1.3 数据可视化最佳实践&#xff08;下&#xff09;1.4 本章小结 第二章…

怎样用Java程序与数据库建立联系?

首先我们要了解一下JDBC&#xff0c;一个为Java程序与关系型数据库交互提供便利的API&#xff08;应用程序编程接口&#xff09;&#xff0c; 本期我们尝试用Java编程软件IDEA与MYSQL数据库建立联系。 首先我们在IDEA中穿件一个&#xff08;SQL&#xff09;&#xff0c;然后导…

系统编程--Linux下文件其他操作

这里写目录标题 文件存储理论补充dentry、inode 文件其他操作stat函数作用函数原型代码&#xff08;以获取文件大小为例&#xff09;补充&#xff08;获取文件类型&#xff09; lstat函数作用函数原型代码补充&#xff08;获取文件权限&#xff09;总结 tipslink函数作用简介函…

畅玩游戏新选择 :游戏本 Windows10 64位 专业版!

对于喜欢游戏竞技的玩家而言&#xff0c;选择一款合适的操作系统对于提升游戏体验至关重要。为了满足这一需求&#xff0c;系统之家小编将带来高性能的游戏本专用Win10操作系统。这一版本系统不仅注重游戏的稳定性&#xff0c;还针对玩家在游戏中可能遇到的超时检测和恢复&…

收银系统源码-千呼新零售收银视频介绍

千呼新零售2.0系统是零售行业连锁店一体化收银系统&#xff0c;包括线下收银线上商城连锁店管理ERP管理商品管理供应商管理会员营销等功能为一体&#xff0c;线上线下数据全部打通。 适用于商超、便利店、水果、生鲜、母婴、服装、零食、百货、宠物等连锁店使用。 详细介绍请…