稀疏支持向量机(Sparse Support Vector Machine, Sparse SVM)

稀疏支持向量机(Sparse Support Vector Machine, Sparse SVM)

稀疏支持向量机是一种在支持向量机的基础上,通过引入稀疏性约束,使得模型参数更加稀疏,从而提高模型的可解释性和计算效率的方法。以下是稀疏支持向量机的详细数学模型理论知识推导、实施步骤与参数解读,以及两个多维数据实例(一个未优化模型,一个优化后的模型)的完整分析。

一、数学模型理论推导

1.1 线性支持向量机

首先,我们回顾线性支持向量机的基本优化问题:

1.2 稀疏支持向量机

1.3 核函数稀疏支持向量机

为了处理非线性可分的数据,我们可以使用核函数将数据映射到高维空间,同时引入稀疏性约束。优化问题变为:

二、实施步骤与参数解读

2.1 选择核函数

常用的核函数有:

2.2 参数选择
  • C:控制分类错误与间隔的权衡。值越大,分类错误越少,但间隔越小,容易过拟合。
  • \gamma:控制RBF核的宽度。值越大,高斯分布越窄,模型复杂度越高,容易过拟合。
  • \lambda:控制稀疏性。值越大,模型参数越稀疏。

三、多维数据实例

import numpy as np
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import Lasso
# 生成数据
X, y = make_classification(n_samples=300, n_features=10, n_informative=5, n_redundant=5, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 未优化的稀疏SVM模型
model = SVC(kernel='linear', C=1.0)
model.fit(X_train, y_train)# 预测与结果分析
y_pred = model.predict(X_test)
print("未优化模型分类报告:")
print(classification_report(y_test, y_pred))# 可视化结果(仅展示前两个特征)
plt.figure(figsize=(10, 6))
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap='coolwarm', s=30, edgecolors='k')
plt.title("未优化的稀疏SVM分类结果", fontname='KaiTi')
plt.show()
import matplotlib.pyplot as plt
from sklearn.svm import SVC
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.feature_selection import SelectFromModel
from sklearn.linear_model import Lasso# 生成数据
X, y = make_classification(n_samples=300, n_features=10, n_informative=5, n_redundant=5, random_state=42)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 使用Lasso进行特征选择
lasso = Lasso(alpha=0.1)
lasso.fit(X_train, y_train)# 使用SelectFromModel来进行特征选择
model_selector = SelectFromModel(lasso, prefit=True)
X_train_selected = model_selector.transform(X_train)
X_test_selected = model_selector.transform(X_test)# 优化后的稀疏SVM模型
model_optimized = SVC(kernel='linear', C=1.0)
model_optimized.fit(X_train_selected, y_train)# 预测与结果分析
y_pred_optimized = model_optimized.predict(X_test_selected)
print("优化后模型分类报告:")
print(classification_report(y_test, y_pred_optimized))# 可视化结果(仅展示前两个特征)
plt.figure(figsize=(10, 6))
plt.scatter(X_test_selected[:, 0], X_test_selected[:, 1], c=y_test, cmap='coolwarm', s=30, edgecolors='k')
plt.title("优化后的稀疏SVM分类结果", fontname='KaiTi')
plt.show()

输出结果:

四、结果与结果解释

4.1 未优化模型
  • 分类报告显示了精度、召回率和F1分数等指标。
  • 可视化图展示了未优化模型的分类边界和测试集数据点。
4.2 优化后的模型
  • 优化后模型的分类报告通常会显示更高的精度、召回率和F1分数,表明模型性能提升。
  • 优化后的可视化图展示了改进后的分类边界,更好地分隔了数据点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/48079.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ideal窗口中左右侧栏消失了

不知道大家在工作过程中有没有遇到过此类问题,不论是Maven项目还是Gradle项目,突然发现Ideal窗口右侧图标丢失了,同事今天突然说大象图标不见了,不知道怎样刷新gradle。 不要慌张,下面提供一些解决思路: 1…

LeetCode 232.用栈实现队列 C写法

LeetCode 232.用栈实现队列 C写法 思路🧐: 栈代码在本篇中。与队列实现栈类似,不过这里我们建立两个栈,一个栈专门存放入队数据,一个专门存放出队数据,不需要再来回导数据。原理在于一个栈的数据到另一个栈…

Windows右键新建Markdown文件类型配置 | Typora | VSCode

🙋大家好!我是毛毛张! 🌈个人首页: 神马都会亿点点的毛毛张 今天毛毛张分享的是如何在右键的新建菜单中添加新建MarkdownFile文件,这是毛毛张分享的关于Typora软件的相关知识的第三期 文章目录 1.前言🏝…

「MQTT over QUIC」与「MQTT over TCP」与 「TCP 」通信测试报告

一、结论 在实车5G测试中「MQTT Over QUIC」整体表现优于「TCP」,可在系统架构升级时采用MQTT Over QUIC替换原有的TCP通讯;从实现原理上基于QUIC比基于TCP在弱网、网络抖动导致频繁重连场景延迟更低。 二、测试方案 网络类型:实车5G、实车…

Easysearch、Elasticsearch、Amazon OpenSearch 快照兼容对比

启动集群 Easysearch sysctl -w vm.max_map_count262144Amazon OpenSearch Elasticsearch 由于这个docker compose没有关于kibana的配置,所以我们还是用Console添加原生的Elasticsearch集群 集群信息 快照还原的步骤 快照前的准备 插件安装 本次测试选择把索…

生产力工具|Endnote 21 Macwin版本安装

一、软件下载: (一)mac版本 Endnote 21版本下载:点击下载 Endnote 20版本下载:点击下载 Endnote X9版本下载:点击下载 (二)Endnote 20 Win版本 第一步:安装好官网软…

【技术前沿 | AI Native应用新纪元:深度解析模型微调的艺术】

在这个智能化浪潮席卷全球的今天,AI技术已经不再是遥不可及的未来概念,而是深深地融入了我们的日常生活与工作中。从智能家居到自动驾驶,从智能客服到医疗诊断,AI正以它独有的方式改变着世界。而在这一过程中,AI Nativ…

随手记:推荐vscode好用的几个小插件

原始用了挺久的插件,先上截图,以后有空再编辑: fittenCode 是一个AI小助手,相对来说很智能,你在vscode当中编写代码,甚至都可以知道你下一步知道干嘛,训练的还可以。而且还可以帮你起名字&…

2024年7月17日(nodejs,npm设置国内镜像,vue脚手架,远程管理ssh,踢出用户,scp命令,ssh免密登录)

1、安装nodejs服务 nodejs是一个运行1环境,和javajdk运行环境格式一样 [roota ~]# yum -y install nodejs.x86_64 安装完成之后,使用node -v 查看版本 [roota ~]# node -v v16.20.2 2、简易服务器的环境安装npm 安装包管理器 npm node packae manger [ro…

云计算实训09——rsync远程同步、自动化推取文件、对rsyncd服务进行加密操作、远程监控脚本

一、rsync远程同步 1.rsync基本概述 (1)sync同步 (2)async异步 (3)rsync远程同步 2.rsync的特点 可以镜像保存整个目录树和文件系统 可以保留原有权限,owner,group,时间,软硬链…

数据分析入门:用Python和Numpy探索音乐流行趋势

一、引言 音乐是文化的重要组成部分,而音乐流行趋势则反映了社会文化的变迁和人们审美的变化。通过分析音乐榜单,我们可以了解哪些歌曲或歌手正在受到大众的欢迎,甚至预测未来的流行趋势。Python作为一种强大的编程语言,结合其丰…

[数据集][目标检测]导盲犬拐杖检测数据集VOC+YOLO格式4635张2类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):4635 标注数量(xml文件个数):4635 标注数量(txt文件个数):4635 标注…

RabbitMQ学习实践一:MQ的安装

文章是本人在学习springboot实现消息队列功能时所经历的过程的记录,仅供参考,如有侵权请随时指出。 参考文章地址: RabbitMQ安装与入门_rabbitmq win11配置-CSDN博客 RabbitMQ入门到实战一篇文章就够了-CSDN博客 RabbitMQ系列&#xff08…

【LeetCode】十五、回溯法:括号生成 + 子集

文章目录 1、回溯法2、leetcode22:括号生成3、leetcode78:子集 1、回溯法 使用场景,如找[1,2,3]的所有子集: 2、leetcode22:括号生成 以n2为例,即两个左括号、两个右括号&#xff0c…

汇编实验5

本实验在32位Linux虚拟机中完成(点击查看安装教程) 实验内容 二进制炸弹实际是由C语言源程序生成的可执行目标代码,主程序可参考bomb.c。运行时,会按次序提示用户输入3个不同的字符串。如果输入的字符串有误,炸弹就会…

随手记:vsCode修改主题色为自定义颜色

因为工作需要长时间面对vscode,视力不好,想要把工具改成护眼色,于是就把vscode改成了自定义的护眼色 效果图: 操作步骤: 快捷键打开设置页面: 按住ctrlshiftp 选择Open setting 按回车键 打开setting页面编…

FlagEval 7月榜丨新增29个模型评测结果,智源发布评估技术报告《AI大模型能力全景扫描》

智源研究院FlagEval 7月榜单新增29个语言、多模态和文生图开源与闭源模型评测结果,包括阿里巴巴、OpenAI、快手、智谱等厂商近期发布的新模型。 本次评测发现,大语言模型,国产模型主观能力整体有所提升;视觉语言新模型的能力有所…

AI(Adobe lliustrator)教程+软件包

简介: 软件主要应用于印刷出版、海报书籍排版、专业插画、多媒体图像处理和互联网页面的制作等,也可以为线稿提供较高的精度和控制,适合生产任何小型设计到大型的复杂项目。 通常用于创建LOGO(商标或徽标),图标,插图…

【数据结构】线性结构——数组、链表、栈和队列

目录 前言 一、数组(Array) 1.1优点 1.2缺点 1.3适用场景 二、链表(Linked List) 2.1优点 2.2缺点 2.3适用场景 三、栈(Stack) 3.1优点 3.2缺点 3.3适用场景 四、队列(Queue) 4.1优点…

广义可加模型和光滑曲线拟合的R代码

🏆本文收录于《CSDN问答解答》专栏,主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案,希望能够助你一臂之力,帮你早日登顶实现财富自由🚀;同时,欢迎大家关注&&收藏&…