sklearn基础教程:掌握机器学习入门的钥匙

sklearn基础教程:掌握机器学习入门的钥匙

在数据科学和机器学习的广阔领域中,scikit-learn(简称sklearn)无疑是最受欢迎且功能强大的库之一。它提供了简单而高效的数据挖掘和数据分析工具,让研究人员、数据科学家以及机器学习爱好者能够轻松地实现各种算法。本文将带你走进sklearn的世界,从基础安装到核心功能,一步步掌握这个强大的工具。

一、sklearn简介

scikit-learn是基于Python的一个开源机器学习库,它建立在NumPy、SciPy和matplotlib之上,提供了大量的算法和工具,用于数据挖掘和数据分析。无论是简单的线性回归,还是复杂的神经网络,sklearn都能提供直观易用的接口。

二、安装sklearn

在开始使用sklearn之前,你需要确保已经安装了Python环境。接下来,你可以通过pip命令轻松安装scikit-learn

pip install scikit-learn

安装完成后,你就可以在Python代码中导入并使用sklearn了。

三、基础操作

1. 数据加载与预处理

sklearn提供了多种数据加载工具,如datasets模块,用于加载标准数据集进行测试。同时,它也提供了丰富的数据预处理功能,如特征缩放、编码分类变量等。

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler# 加载iris数据集
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)# 特征缩放
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

2. 模型训练与评估

sklearn支持多种机器学习算法,从简单的线性模型到复杂的集成方法。训练模型通常涉及选择适当的算法类、初始化模型对象、调用fit方法进行训练,并使用predict方法进行预测。

from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score# 初始化逻辑回归模型
model = LogisticRegression()# 训练模型
model.fit(X_train_scaled, y_train)# 预测测试集
y_pred = model.predict(X_test_scaled)# 评估模型
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")

3. 模型选择与调优

在实际应用中,选择合适的模型和参数对模型性能至关重要。sklearn提供了交叉验证、网格搜索等工具,帮助用户自动进行模型选择和参数调优。

from sklearn.model_selection import GridSearchCV# 定义参数网格
param_grid = {'C': [0.1, 1, 10], 'max_iter': [100, 200]}# 初始化网格搜索对象
grid_search = GridSearchCV(LogisticRegression(), param_grid, cv=5)# 执行网格搜索
grid_search.fit(X_train_scaled, y_train)# 获取最佳参数和最佳模型
best_params = grid_search.best_params_
best_model = grid_search.best_estimator_# 使用最佳模型进行预测和评估(略)

四、进阶应用

除了上述基础操作外,sklearn还支持更高级的机器学习技术,如降维(PCA、LDA)、聚类(K-means)、集成学习(随机森林、梯度提升树)等。通过深入学习和实践,你可以逐步掌握这些技术,并应用于更复杂的实际问题中。

1. 降维

主成分分析(PCA)

理论背景: 主成分分析(PCA)是一种统计过程,通过正交变换将可能相关的变量转换为一组线性不相关的变量,称为主成分。这些主成分按照方差从大到小排列,第一个主成分具有最大的方差,后续主成分方差依次减小。PCA常用于降维,保留数据中的主要变化模式。

代码示例

from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler# 假设X_train是原始特征数据
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)# 选择要保留的主成分数量
n_components = 2
pca = PCA(n_components=n_components)
X_train_pca = pca.fit_transform(X_train_scaled)# 输出降维后的数据维度
print(X_train_pca.shape)  # 应该是 (n_samples, n_components)# 可视化降维结果(如果n_components <= 3)
import matplotlib.pyplot as plt
plt.scatter(X_train_pca[:, 0], X_train_pca[:, 1], c=y_train)
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.title('PCA of Iris Dataset')
plt.show()

2. 聚类

K-means聚类

理论背景: K-means是一种迭代求解的聚类算法,目的是将数据分为K个簇,使得簇内点之间的距离尽可能小,而簇间距离尽可能大。算法首先随机选择K个点作为初始簇中心,然后将每个点分配给最近的簇中心,之后更新簇中心为簇内所有点的均值,重复这个过程直到簇中心不再发生变化或达到预定的迭代次数。

代码示例

from sklearn.cluster import KMeans# 假设X_train_scaled是已经标准化处理的特征数据
k = 3  # 假设我们想要将数据聚成3类
kmeans = KMeans(n_clusters=k, random_state=42)
kmeans.fit(X_train_scaled)# 获取聚类标签
labels = kmeans.labels_# 可视化聚类结果(如果特征维度为2或可以使用PCA降维到2维)
plt.scatter(X_train_scaled[:, 0], X_train_scaled[:, 1], c=labels, cmap='viridis', marker='o')
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75)
plt.title("K-means Clustering")
plt.xlabel("Feature 1")
plt.ylabel("Feature 2")
plt.show()

3. 集成学习

随机森林

理论背景: 随机森林是一种集成学习方法,通过构建多个决策树并输出它们的预测结果的模式或平均值来改进预测性能。随机森林在构建每棵树时,不仅从原始数据集中随机抽取样本(带放回抽样),还从所有特征中随机选择一部分特征用于树的分裂。这种随机性有助于减少模型过拟合的风险。

代码示例

from sklearn.ensemble import RandomForestClassifier# 初始化随机森林分类器
n_estimators = 100  # 决策树的数量
rf = RandomForestClassifier(n_estimators=n_estimators, random_state=42)# 训练模型
rf.fit(X_train_scaled, y_train)# 预测测试集
y_pred_rf = rf.predict(X_test_scaled)# 评估模型(使用准确率作为评估指标)
from sklearn.metrics import accuracy_score
accuracy = accuracy_score(y_test, y_pred_rf)
print(f"Accuracy: {accuracy:.2f}")

4. 模型调优

网格搜索(GridSearchCV)

理论背景: 网格搜索是一种通过遍历给定参数的网格来优化模型性能的方法。对于每种参数组合,网格搜索使用交叉验证来评估模型的性能,并保留最佳参数组合。这种方法虽然计算量大,但能够系统地探索参数空间,找到可能的最优解。

代码示例

from sklearn.model_selection import GridSearchCV# 定义参数网格
param_grid = {'n_estimators': [50, 100, 200],'max_depth': [None, 10, 20],'min_samples_split': [2, 5, 10]
}# 初始化随机森林分类器和网格搜索对象
rf = RandomForestClassifier(random_state=42)
grid_search = GridSearchCV(rf, param_grid, cv=5, scoring='accuracy')# 执行网格搜索
grid_search.fit(X_train_scaled, y_train)# 输出最佳参数和最佳模型的性能
best_params = grid_search.best_params_
print("Best parameters:", best_params)
best_model = grid_search.best_estimator_
best_score = grid_search.best_score_
print(f"Best cross-validation score: {best_score:.2f}")# 使用最佳模型进行预测(可选)
# y_pred_best = best_model.predict(X_test_scaled)
# ...(评估最佳模型的性能)

五、总结

scikit-learn作为Python中最为流行的机器学习库之一,以其简洁的API、丰富的算法和强大的功能赢得了广大用户的青睐。通过本文的介绍,相信你已经对sklearn有了初步的了解,并能够开始进行一些基础的机器学习任务。然而,机器学习是一个不断发展和深化的领域,只有不断学习和实践,才能真正掌握其中的精髓。希望本文能为你打开机器学习的大门,开启一段充满挑战与收获的旅程。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/46490.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Nuxt.js 错误侦探:useError 组合函数

title: Nuxt.js 错误侦探&#xff1a;useError 组合函数 date: 2024/7/14 updated: 2024/7/14 author: cmdragon excerpt: 摘要&#xff1a;文章介绍Nuxt.js中的useError组合函数&#xff0c;用于统一处理客户端和服务器端的错误&#xff0c;提供statusCode、statusMessage和…

【C++】—— 初识C++

【C】—— 初识C 一、什么是 C二、C 的发展历史三、C 版本更新四、C 的重要性五、C 在工作领域中的运用六、C 书籍推荐&#xff1a; 一、什么是 C C语言 是结构化和模块化的语言&#xff0c;适合处理较小规模的程序。对于复杂的问题&#xff0c;规模较大的程序&#xff0c;需要…

k8s快速部署一个网站

1&#xff09;使用Deployment控制器部署镜像&#xff1a; kubectl create deployment web-demo --imagelizhenliang/web-demo:v1 kubectl get deployment,pods[rootk8s-matser ~]# kubectl get pods NAME READY STATUS RESTARTS A…

STM32 BootLoader 刷新项目 (四) 通信协议

STM32 BootLoader 刷新项目 (四) 通信协议 文章目录 STM32 BootLoader 刷新项目 (四) 通信协议1. 通信流程2. 支持指令3. 通信流程4. 指令结构5. 操作演示 前面几章节&#xff0c;我们已经介绍了BootLoader的整体程序框架&#xff0c;方案设计&#xff0c;以及STM32CubdeMX的配…

数据结构(4.0)——串的定义和基本操作

串的定义(逻辑结构) 串&#xff0c;即字符串(String)是由零个或多个字符组成的有序数列。 一般记为Sa1a2....an(n>0) 其中&#xff0c;S是串名&#xff0c;单引号括起来的字符序列是串的值;ai可以是字母、数字或其他字符&#xff1b;串中字符的个数n称为串的长度。n0时的…

常开常闭液位传感器怎么选

在选择常开常闭传感器时&#xff0c;关键是根据其工作原理和应用需求来进行合适的选择&#xff0c;以确保系统的正常运行和效率。常开和常闭传感器的设计在信号输出时有明显差异&#xff0c;因此在不同的控制系统中选择合适的类型至关重要。 常开传感器的特点是在没有检测到目…

Nginx的访问限制与访问控制

访问限制 访问限制是一种防止恶意访问的常用手段&#xff0c;可以指定同一IP地址在固定时间内的访问次数&#xff0c;或者指定同一IP地址在固定时间内建立连接的次数&#xff0c;若超过网站指定的次数访问将不成功。 请求频率限制配置 请求频率限制是限制客户端固定时间内发…

C#小结:未能找到类型或命名空间名“xxx”(是否缺少 using 指令或程序集引用?)

方案一&#xff1a;移除这些失效的引用&#xff0c;下载对应版本的dll&#xff0c;重新添加引用 方案二&#xff1a;项目右键属性-调整目标框架版本&#xff08;一般是降低版本&#xff09; 方案三&#xff1a;调整编译顺序&#xff1a; 项目A&#xff1a;引用1、引用2 &…

算法训练 | 图论Part8 | 117. 软件构建、47. 参加科学大会

目录 117. 软件构建 拓扑排序法 47. 参加科学大会 dijkstra法 117. 软件构建 题目链接&#xff1a;117. 软件构建 文章讲解&#xff1a;代码随想录 拓扑排序法 代码一&#xff1a;拓扑排序 #include <iostream> #include <vector> #include <queue> …

鸿蒙架构之AOP

零、主要内容 AOP 简介ArkTs AOP 实现原理 JS 原型链AOP实现原理 AOP的应用场景 统计类&#xff1a; 方法调用次数统计、方法时长统计防御式编程&#xff1a;参数校验代理模式实现 AOP的注意事项 一、AOP简介 对于Android、Java Web 开发者来说&#xff0c; AOP编程思想并不…

最值得推荐的10款Windows软件!

AI视频生成&#xff1a;小说文案智能分镜智能识别角色和场景批量Ai绘图自动配音添加音乐一键合成视频播放量破百万https://aitools.jurilu.com/1.音乐播放器——Dopamine Dopamine是一款音乐播放器&#xff0c;设计简洁美观。它支持多种音频格式&#xff0c;包括wav、mp3、ogg…

亚马逊IP关联是什么?要怎么解决呢?

亚马逊不仅提供了广泛的商品和服务&#xff0c;也是许多企业和个人选择的电子商务平台。然而&#xff0c;与亚马逊相关的IP关联问题&#xff0c;特别是在网络安全和运营管理方面&#xff0c;经常成为使用亚马逊服务的用户和商家关注的焦点。通过了解亚马逊IP关联的含义、可能的…

MMLab-dataset_analysis

数据分析工具 这里写目录标题 数据分析工具dataset_analysis.py数据可视化分析 benchmark.pybrowse_coco_json.pybrowse_dataset.pyOptimize_anchors mmyolo、mmsegmentation等提供了数据集分析工具 dataset_analysis.py 数据采用coco格式数据 根据配置文件分析全部数据类型或…

【python】pyinstaller编译后py脚本中的shell命令报错symbol lookup error

文章目录 问题描述解决办法总结 问题描述 有一个python脚本testa.py&#xff0c;脚本内部使用了shell命令&#xff0c;比如&#xff1a; # testa.py import subprocess subprocess.call("mkdir -p test123", shellTrue)直接使用pyinstaller进行编译 pyinstaller t…

从零开始学习嵌入式----C语言数组指针

目录 拨开迷雾&#xff1a;深入浅出C语言数组指针 一、 数组与指针&#xff1a;剪不断理还乱的关系 二、 数组指针&#xff1a;指向数组的指针 三、 数组指针的应用场景 四、 总结 拨开迷雾&#xff1a;深入浅出C语言数组指针 数组和指针&#xff0c;在C语言的世界里&…

玩转springboot之SpringApplicationRunListener

SpringApplicationRunListener 在看源码的时候经常看到 SpringApplicationRunListeners listeners getRunListeners(args); listeners.starting();这个SpringApplicationRunListeners是用来干嘛的呢 public interface SpringApplicationRunListener {/*** run方法首次启动的…

pico+unity手柄和摄像机控制初级设置

1、摄像头配置 摄像头模式、floor是追踪原点类型&#xff08;将根据设备检测到地面的高度来计算追踪原点&#xff09;&#xff0c; Device 模式时&#xff0c;为通常理解的 Eye 模式&#xff0c;不会将根据设备检测到地面的高度来计算追踪原点 选择floor时&#xff0c;修改相…

K8S ingress 初体验 - ingress-ngnix 的安装与使用

准备环境 先把 google 的vm 跑起来… gatemanMoreFine-S500:~/projects/coding/k8s-s/service-case/cloud-user$ kubectl get nodes NAME STATUS ROLES AGE VERSION k8s-master Ready control-plane,master 124d v1.23.6 k8s-no…

Redis实践

Redis实践 使用复杂度高的命令 如果在使用Redis时&#xff0c;发现访问延迟突然增大&#xff0c;如何进行排查&#xff1f; 首先&#xff0c;第一步&#xff0c;建议你去查看一下Redis的慢日志。Redis提供了慢日志命令的统计功能&#xff0c;我们通过以下设置&#xff0c;就…

王牌站士Ⅶ--理解大型语言模型LLM的参数

模型的大小并不一定决定其成功 在学习任何大型语言模型 (LLM) 时&#xff0c;您首先会听到的事情之一就是给定模型有多少个参数。如果您查看下面的图表&#xff0c;您会注意到参数大小范围很广 - 一个模型可能有 10 亿或 20 亿个参数&#xff0c;也可能有超过 1.75 万亿个参数。…