LLM 合成数据生成完整指南

大型语言模型是强大的工具,不仅可以生成类似人类的文本,还可以创建高质量的合成数据。这种能力正在改变我们进行 AI 开发的方式,特别是在现实世界数据稀缺、昂贵或隐私敏感的情况下。在本综合指南中,我们将探索 LLM 驱动的合成数据生成,深入探讨其方法、应用和最佳实践。
在这里插入图片描述

1.使用 LLM 进行合成数据生成简介

使用 LLM 进行综合数据生成需要利用这些先进的 AI 模型来创建模拟真实世界数据的人工数据集。这种方法有几个优点:

1.1. 灵活性:生成合成数据通常比收集和注释真实世界数据更便宜。
1.2. 隐私保护:可以在不暴露敏感信息的情况下创建合成数据。
1.3. 可扩展性: 大型语言模型(LLMs)可以快速生成大量多样化的数据。
1.4. 定制:数据可以根据特定用例或场景进行定制。

让我们首先了解使用 LLM 生成合成数据的基本过程:

from transformers import AutoTokenizer, AutoModelForCausalLM
# Load a pre-trained LLM
model_name = "gpt2-large"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Define a prompt for synthetic data generation
prompt = "Generate a customer review for a smartphone:"
# Generate synthetic data
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output = model.generate(input_ids, max_length=100, num_return_sequences=1)
# Decode and print the generated text
synthetic_review = tokenizer.decode(output[0], skip_special_tokens=True)
print(synthetic_review)

这个简单的例子展示了如何使用 LLM 生成合成客户评论。然而,LLM 驱动的合成数据生成的真正威力在于更复杂的技术和应用。

2. 合成数据生成的高级技术

2.1 及时工程

即时工程对于指导 LLM 生成高质量、相关的合成数据至关重要。通过精心设计提示,我们可以控制生成数据的各个方面,例如样式、内容和格式。

更复杂的提示示例:

from transformers import AutoTokenizer, AutoModelForCausalLM
# Load a pre-trained LLM
model_name = "gpt2-large"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Define a prompt for synthetic data generation
prompt = "Generate a customer review for a smartphone:"
# Generate synthetic data
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output = model.generate(input_ids, max_length=100, num_return_sequences=1)
# Decode and print the generated text
synthetic_review = tokenizer.decode(output[0], skip_special_tokens=True)
print(synthetic_review)

这种方法可以生成更加可控、更加多样化的合成数据,以适应特定的场景或产品类型。

2.2 小样本学习

少量学习涉及向 LLM 提供所需输出格式和样式的几个示例。此技术可以显著提高生成数据的质量和一致性。

few_shot_prompt = """
Generate a customer support conversation between an agent (A) and a customer (C) about a product issue. Follow this format:
C: Hello, I'm having trouble with my new headphones. The right earbud isn't working.
A: I'm sorry to hear that. Can you tell me which model of headphones you have?
C: It's the SoundMax Pro 3000.
A: Thank you. Have you tried resetting the headphones by placing them in the charging case for 10 seconds?
C: Yes, I tried that, but it didn't help.
A: I see. Let's try a firmware update. Can you please go to our website and download the latest firmware?
Now generate a new conversation about a different product issue:
C: Hi, I just received my new smartwatch, but it won't turn on.
"""
# Generate the conversation
input_ids = tokenizer.encode(few_shot_prompt, return_tensors="pt")
output = model.generate(input_ids, max_length=500, num_return_sequences=1)
synthetic_conversation = tokenizer.decode(output[0], skip_special_tokens=True)
print(synthetic_conversation)

这种方法有助于 LLM 了解所需的对话结构和风格,从而实现更真实的综合客户支持互动。

2.3 条件生成

条件生成允许我们控制生成数据的特定属性。当我们需要创建具有某些受控特征的多样化数据集时,这尤其有用。

from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch
model = GPT2LMHeadModel.from_pretrained("gpt2-medium")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2-medium")
def generate_conditional_text(prompt, condition, max_length=100):input_ids = tokenizer.encode(prompt, return_tensors="pt")attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device=input_ids.device)# Encode the conditioncondition_ids = tokenizer.encode(condition, add_special_tokens=False, return_tensors="pt")# Concatenate condition with input_idsinput_ids = torch.cat([condition_ids, input_ids], dim=-1)attention_mask = torch.cat([torch.ones(condition_ids.shape, dtype=torch.long, device=condition_ids.device), attention_mask], dim=-1)output = model.generate(input_ids, attention_mask=attention_mask, max_length=max_length, num_return_sequences=1, no_repeat_ngram_size=2, do_sample=True, top_k=50, top_p=0.95, temperature=0.7)return tokenizer.decode(output[0], skip_special_tokens=True)
# Generate product descriptions with different conditions
conditions = ["Luxury", "Budget-friendly", "Eco-friendly", "High-tech"]
prompt = "Describe a backpack:"
for condition in conditions:
description = generate_conditional_text(prompt, condition)
print(f"{condition} backpack description:\n{description}\n")

这种技术使我们能够生成多样化的合成数据,同时保持对特定属性的控制,确保生成的数据集涵盖广泛的场景或产品类型。

3. LLM 生成的合成数据的应用

训练数据增强

LLM 生成的合成数据最强大的应用之一是增强现有的训练数据集。这在现实世界数据有限或获取成本高昂的情况下尤其有用。

import pandas as pd
from sklearn.model_selection import train_test_split
from transformers import pipeline
# Load a small real-world dataset
real_data = pd.read_csv("small_product_reviews.csv")
# Split the data
train_data, test_data = train_test_split(real_data, test_size=0.2, random_state=42)
# Initialize the text generation pipeline
generator = pipeline("text-generation", model="gpt2-medium")
def augment_dataset(data, num_synthetic_samples):synthetic_data = []for _, row in data.iterrows():prompt = f"Generate a product review similar to: {row['review']}\nNew review:"synthetic_review = generator(prompt, max_length=100, num_return_sequences=1)[0]['generated_text']synthetic_data.append({'review': synthetic_review,'sentiment': row['sentiment'] # Assuming the sentiment is preserved})if len(synthetic_data) >= num_synthetic_samples:breakreturn pd.DataFrame(synthetic_data)
# Generate synthetic data
synthetic_train_data = augment_dataset(train_data, num_synthetic_samples=len(train_data))
# Combine real and synthetic data
augmented_train_data = pd.concat([train_data, synthetic_train_data], ignore_index=True)
print(f"Original training data size: {len(train_data)}")
print(f"Augmented training data size: {len(augmented_train_data)}")

这种方法可以显著增加训练数据集的大小和多样性,从而有可能提高机器学习模型的性能和稳健性。

4. 挑战和最佳实践

虽然 LLM 驱动的合成数据生成提供了许多好处,但也带来了挑战:

  1. 质量控制:确保生成的数据质量高且与您的用例相关。实施严格的验证流程。
  2. 减少偏见:LLM 可以继承并放大其训练数据中存在的偏见。请注意这一点并实施偏见检测和缓解策略。
  3. 探讨:确保您的合成数据集多样化且能代表真实世界场景。
  4. 持续一致:保持生成的数据的一致性,尤其是在创建大型数据集时。
  5. 关于上海赛睿克及 SCIREQ: 在生成模仿敏感或个人信息的合成数据时,要特别注意伦理含义。

LLM 驱动的合成数据生成的最佳实践:

  1. 迭代细化:根据输出的质量不断完善你的提示和生成技术。
  2. 混合方法:将 LLM 生成的数据与真实世界数据相结合以获得最佳结果。
  3. 验证:实施强大的验证流程以确保生成数据的质量和相关性。
  4. 配套文档:维护合成数据生成过程的清晰文档,以确保透明度和可重复性。
  5. 道德准则:制定并遵守合成数据生成和使用的道德准则。

5. 结论

LLM 驱动的合成数据生成是一种强大的技术,它正在改变我们以数据为中心的 AI 开发方式。通过利用高级语言模型的功能,我们可以创建多样化、高质量的数据集,推动各个领域的创新。随着技术的不断发展,它有望在 AI 研究和应用程序开发中释放新的可能性,同时解决与数据稀缺和隐私相关的关键挑战。

随着我们不断前进,以平衡的视角看待合成数据生成至关重要,充分利用其优势,同时注意其局限性和道德影响。通过谨慎实施和不断改进,LLM 驱动的合成数据生成有可能加速 AI 进步并开辟机器学习和数据科学的新领域。

原文地址:https://www.unite.ai/full-guide-on-llm-synthetic-data-generation/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/45588.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言——流程控制:if...else、switch...case

控制类语句: 逻辑运算符: 选择语句: if...else: if()括号内的内容终究会被转换成0,1,满足的话即为1,不满足的话为0。因此要注意,()括号内因为条件…

简单实现一个本地ChatGPT web服务(langchain框架)

简单实现一个本地ChatGPT 服务,用到langchain框架,fastapi,并且本地安装了ollama。 依赖安装: pip install langchain pip install langchain_community pip install langchain-cli # langchain v0.2 2024年5月最新版本 pip install bs4 pi…

ChatGPT摆脱“AI味”:全面提升写作质感

ChatGPT在各种写作、创作场景都发挥了很大的价值,即使中文语料库占比不到5%,也能生成流畅的中文文本。但随着使用的深入,大家也逐渐发现了机器生成的内容,往往带有一种僵硬、刻板的“AI味”,尤其在论文、自媒体写作中&…

算法力扣刷题记录 四十三【最大、最小深度问题】

前言 本文学习树的深度问题:二叉树(N叉树)最大深度、最小深度; 记录 三十九【层序遍历模版应用二】中解决过二叉树的最大深度和最小深度题目。思路是按层遍历: 最大深度,相当于层序遍历结束;…

ZBLOG程序怎么天收录?本人亲自试过请看以下教程(zblog怎么样)

您为管理员组,请查看下方隐藏内容! 先去ZBLOG官网下载ZBLOG程序 直达地址https://www.zblogcn.com/ 安装到宝塔里 安装好了之后打开zblog的后台 点开应用中心搜索CMS自适应资讯主题免费 安装即可 安装了之后配置主题内容 有经验者可以去吧动态改成…

pnpm9.5.0(catalog协议)

catalog(目录协议) 目录是工作区功能,用于将依赖版本范围定义为可重用常量,目录中定义的常量可以在package.json中使用, 结合 pnpm-workspace.yaml使用 定义pnpm-workspace.yaml packages:定义多仓库 packages:- packages/*cata…

Flink异常:org/apache/hadoop/hive/ql/parse/SemanticException

在flink项目中跑 上面这段代码出现如下这个异常&#xff0c; java.lang.NoClassDefFoundError: org/apache/thrift/TException 加上下面这个依赖后不报错 <dependency> <groupId>org.apache.thrift</groupId> <artifactId>libthrift</artifactId…

【逆向基础】十、工具分享之DIE(Detect It Easy)

一、简介 DIE&#xff08;Detect It Easy&#xff09;是一款可以轻松检测PE文件的程序&#xff1b;其主要作用是查壳&#xff0c;并将pe文件的内容解析出来&#xff0c;包括PE文件中包含的导入函数、导出函数的名称及地址&#xff0c;入口函数地址等&#xff0c;是技术人员分析…

lua 脚本语言 : 基础到高级语法

❃博主首页 &#xff1a; 「码到三十五」 &#xff0c;同名公众号 :「码到三十五」&#xff0c;wx号 : 「liwu0213」 ☠博主专栏 &#xff1a; <mysql高手> <elasticsearch高手> <源码解读> <java核心> <面试攻关> ♝博主的话 &#xff1a…

JupyterNotebook中导出当前环境,并存储为requirements.txt

​使用Anaconda管理Python环境时&#xff0c;可以轻松地导出环境配置&#xff0c;以便在其他机器或环境中重新创建相同的环境。可以通过生成一个environment.yml文件实现的&#xff0c;该文件包含了环境中安装的所有包及其版本。但是&#xff0c;常常在一些课程中JupyterNotebo…

微信小程序毕业设计-学习资料库系统项目开发实战(附源码+论文)

大家好&#xff01;我是程序猿老A&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。 &#x1f49e;当前专栏&#xff1a;微信小程序毕业设计 精彩专栏推荐&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb;&#x1f447;&#x1f3fb; &#x1f380; Python毕业设计…

ProbTS:时间序列预测的统一评测框架

编者按&#xff1a;如今&#xff0c;时间序列预测在健康、能源、商业、气候等多个行业发挥着至关重要的作用。它不仅影响着相关资源的分配和调度&#xff0c;还影响着行业的管理和运营决策。但是现有的时间序列预测方法通常缺乏对基础预测需求的全面考虑&#xff0c;无论是经典…

JavaScript青少年简明教程:开发工具与运行环境

JavaScript青少年简明教程&#xff1a;开发工具与运行环境 JavaScript是一种基于对象和事件驱动且具有安全性能的脚本语言。使用它和HTML结合可以开发出交互式的Web页面。 脚本语言是为了缩短传统的编写-编译-链接-运行过程而创建的计算机编程语言。脚本通常是解释执行而非编…

阿里巴巴矢量图标库使用

阿里巴巴矢量图标库官网 添加图标到购物车 悬浮到图标上面会有个购物车icon,点击一下就可以添加购物车了 添加图标到项目 添加完购物车后,右上角会有当前在购物车的数量,点击右上角购物车icon,在新弹窗内点击添加至项目,选择添加到哪个项目(没有项目就创建一个),点击完成,…

Milvus 核心设计(1) ---- 数据一致性的等级及使用场景

目录 背景 Milvus的数据一致性 设置数据一致性等级 等级类型 PACELC定理 level 详细解释 Strong Bounded staleness Session Eventually 总结 背景 分布式上的可扩展性是个比较重要的concept。Chroma 核心之前写过了,他的最大优势在于轻量级且好用。Milvus相对Ch…

初识Spring Web MVC

1. 什么是 Spring Web MVC&#xff1f; Spring Web MVC 是基于 Servlet API 构建的原始 Web 框架&#xff0c;从⼀开始就包含在 Spring 框架中。它的正式名称“Spring Web MVC”来⾃其源模块的名称(Spring-webmvc)&#xff0c;但它通常被称为"SpringMVC".Servlet&am…

省市县下拉框的逻辑以及多表联查的实例

2024.7.12 一. 省市县的逻辑开发。1、准备&#xff1a;1.1. 要求&#xff1a;1.2 数据库表&#xff1a; 2. 逻辑&#xff1a;3. 方法3.1 创建实体类3.2 数据访问层3.3 实现递归方法3.4 控制器实现3.5 前端处理 二、多表联查&#xff08;给我干红温了&#xff09;1. 出现了问题2…

Mac VSCode 突然闪退、崩溃、打不开了

vscode 1.90.2版本下载&#xff0c;刚上传还在审核中 1、 思路历程 VSCode 作为前端常用开发工具&#xff0c;其重要性就不一一描述了。 所以 VSCode 突然打不开了&#xff0c;真的是让我一脸懵逼。 本来以为问题不大&#xff0c;于是 &#xff1a; 1、重启了一下VSCode 2、…

【C语言】实践:贪吃蛇小游戏(附源码)

欢迎光顾我的homepage 前言 贪吃蛇小游戏想必大家都玩过吧&#xff0c;现在就要C语言代码来实现一下贪吃蛇小游戏 在实现之前&#xff0c;我们要对C语言结构体、指针、链表(单链表)有一定的基础 先来看一下预期运行效果 一、Win32 API 这里实现贪吃蛇游戏会使用一些Win32 AP…

论文阅读【时间序列】TimeMixer (ICLR2024)

【时间序列】TimeMixer (ICLR2024) 原文链接&#xff1a;TIMEMIXER: DECOMPOSABLE MULTISCALE MIXING FOR TIME SERIES FORECASTING 代码仓库&#xff1a;https://github.com/kwuking/TimeMixer 符号定义 符号含义P用于预测的历史序列长度&#xff08;seq_len&#xff09;F预测…