#AI夏令营 #Datawhale #夏令营
1.赛事简介
随着全球经济的快速发展和城市化进程的加速,电力系统面临着越来越大的挑战。电力需求的准确预测对于电网的稳定运行、能源的有效管理以及可再生能源的整合至关重要。
2.赛事任务
给定多个房屋对应电力消耗历史N天的相关序列数据等信息,预测房屋对应电力的消耗。
2024 iFLYTEK A.I.开发者大赛-讯飞开放平台
3.Task2:进阶lightgbm,开始特征工程
(1)导入模块:此部分包含代码所需的模块
import numpy as np
import pandas as pd
import lightgbm as lgb
from sklearn.metrics import mean_squared_log_error, mean_absolute_error
import tqdm
import sys
import os
import gc
import argparse
import warnings
warnings.filterwarnings('ignore')
(2)数据准备
在数据准备阶段,主要读取训练数据和测试数据,并进行基本的数据展示。
train = pd.read_csv('./data/train.csv')
test = pd.read_csv('./data/test.csv')
数据简单介绍:其中id为房屋id,dt为日标识,训练数据dt最小为11,不同id对应序列长度不同;type为房屋类型,通常而言不同类型的房屋整体消耗存在比较大的差异;target为实际电力消耗,也是我们的本次比赛的预测目标。下面进行简单的可视化分析,帮助我们对数据有个简单的了解。
-
不同type类型对应target的柱状图
import matplotlib.pyplot as plt
# 不同type类型对应target的柱状图
type_target_df = train.groupby('type')['target'].mean().reset_index()
plt.figure(figsize=(8, 4))
plt.bar(type_target_df['type'], type_target_df['target'], color=['blue', 'green'])
plt.xlabel('Type')
plt.ylabel('Average Target Value')
plt.title('Bar Chart of Target by Type')
plt.show()
-
id为00037f39cf的按dt为序列关于target的折线图
specific_id_df = train[train['id'] == '00037f39cf']
plt.figure(figsize=(10, 5))
plt.plot(specific_id_df['dt'], specific_id_df['target'], marker='o', linestyle='-')
plt.xlabel('DateTime')
plt.ylabel('Target Value')
plt.title("Line Chart of Target for ID '00037f39cf'")
plt.show()
(3)特征工程
这里主要构建了历史平移特征和窗口统计特征;每种特征都是有理可据的,具体说明如下:
-
历史平移特征:通过历史平移获取上个阶段的信息;如下图所示,可以将d-1时间的信息给到d时间,d时间信息给到d+1时间,这样就实现了平移一个单位的特征构建。
-
窗口统计特征:窗口统计可以构建不同的窗口大小,然后基于窗口范围进统计均值、最大值、最小值、中位数、方差的信息,可以反映最近阶段数据的变化情况。如下图所示,可以将d时刻之前的三个时间单位的信息进行统计构建特征给我d时刻。
# 合并训练数据和测试数据,并进行排序 data = pd.concat([test, train], axis=0, ignore_index=True) data = data.sort_values(['id','dt'], ascending=False).reset_index(drop=True)# 历史平移 for i in range(10,30):data[f'last{i}_target'] = data.groupby(['id'])['target'].shift(i)# 窗口统计 data[f'win3_mean_target'] = (data['last10_target'] + data['last11_target'] + data['last12_target']) / 3# 进行数据切分 train = data[data.target.notnull()].reset_index(drop=True) test = data[data.target.isnull()].reset_index(drop=True)# 确定输入特征 train_cols = [f for f in data.columns if f not in ['id','target']]
4)模型训练与测试集预测
选择使用Lightgbm模型,也是通常作为数据挖掘比赛的基线模型,在不需要过程调参的情况的也能得到比较稳定的分数。另外需要注意的是,训练集和验证集的构建,因为数据存在时序关系,所以严格按照时序进行切分,这里选择原始给出训练数据集dt为30之后作为训练数据,之前的数据作为验证数据,这样保证了数据不存在穿越问题(不使用未来数据预测历史数据)。
def time_model(clf, train_df, test_df, cols):# 训练集和验证集切分trn_x, trn_y = train_df[train_df.dt>=31][cols], train_df[train_df.dt>=31]['target']val_x, val_y = train_df[train_df.dt<=30][cols], train_df[train_df.dt<=30]['target']# 构建模型输入数据train_matrix = clf.Dataset(trn_x, label=trn_y)valid_matrix = clf.Dataset(val_x, label=val_y)# lightgbm参数lgb_params = {'boosting_type': 'gbdt','objective': 'regression','metric': 'mse','min_child_weight': 5,'num_leaves': 2 ** 5,'lambda_l2': 10,'feature_fraction': 0.8,'bagging_fraction': 0.8,'bagging_freq': 4,'learning_rate': 0.05,'seed': 2024,'nthread' : 16,'verbose' : -1,}# 训练模型model = clf.train(lgb_params, train_matrix, 50000, valid_sets=[train_matrix, valid_matrix], categorical_feature=[], verbose_eval=500, early_stopping_rounds=500)# 验证集和测试集结果预测val_pred = model.predict(val_x, num_iteration=model.best_iteration)test_pred = model.predict(test_df[cols], num_iteration=model.best_iteration)# 离线分数评估score = mean_squared_error(val_pred, val_y)print(score)return val_pred, test_predlgb_oof, lgb_test = time_model(lgb, train, test, train_cols)# 保存结果文件到本地
test['target'] = lgb_test
test[['id','dt','target']].to_csv('submit.csv', index=None)
得到分数。
4.进阶
特征工程的重要性不言而喻
又加了一些特征,本来可以加更多,但是colab内存不够用。
数据有几百万,特征没办法加更多,后期看看怎么优化吧。