YOLOv10改进 | 主干/Backbone篇 | 利用RT-DETR特征提取网络PPHGNetV2改进YOLOv10

 一、本文介绍

本文给大家带来利用RT-DETR模型主干HGNet去替换YOLOv10的主干,RT-DETR是今年由百度推出的第一款实时的ViT模型,其在实时检测的领域上号称是打败了YOLO系列,其利用两个主干一个是HGNet一个是ResNet,其中HGNet就是我们今天来讲解的网络结构模型,这个网络结构目前还没有推出论文,所以其理论知识在网络上也是非常的少,我也是根据网络结构图进行了分析(精度mAP提高0.05)

  专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备 


目录

 一、本文介绍

二、HGNetV2原理讲解

三、HGNetV2的代码

四、手把手教你添加HGNetV2 

4. 1 HGNetV2-l的yaml文件(此为对比试验版本)

4.2 HGNetV2-x的yaml文件

五、运行成功记录

六、本文总结


二、HGNetV2原理讲解

 

本文论文地址:RT-DETR论文地址

本文代码来源:HGNetV2的代码来源


PP-HGNet 骨干网络的整体结构如下: 

其中,PP-HGNet是由多个HG-Block组成,HG-Block的细节如下:

上面的图表是PP-HGNet神经网络架构的概览,下面我会对其中的每一个模块进行分析:

1. Stem层:这是网络的初始预处理层,通常包含卷积层,开始从原始输入数据中提取特征。

2. HG(层次图)块:这些块是网络的核心组件,设计用于以层次化的方式处理数据。每个HG块可能处理数据的不同抽象层次,允许网络从低级和高级特征中学习。

3. LDS(可学习的下采样)层:位于HG块之间的这些层可能执行下采样操作,减少特征图的空间维度,减少计算负载并可能增加后续层的感受野。

4. GAP(全局平均池化):在最终分类之前,使用GAP层将特征图的空间维度减少到每个特征图一个向量,有助于提高网络对输入数据空间变换的鲁棒性。

5. 最终的卷积和全连接(FC)层:网络以一系列执行最终分类任务的层结束。这通常涉及一个卷积层(有时称为1x1卷积)来组合特征,然后是将这些特征映射到所需输出类别数量的全连接层。 

这种架构的主要思想是利用层次化的方法来提取特征,其中复杂的模式可以在不同的规模和抽象层次上学习,提高网络处理复杂图像数据的能力。

这种分层和高效的处理对于图像分类等复杂任务非常有利,在这些任务中,精确预测至关重要的是在不同规模上识别复杂的模式和特征。图表还显示了HG块的扩展视图,包括多个不同滤波器大小的卷积层,以捕获多样化的特征,然后通过一个元素级相加或连接的操作(由+符号表示)在数据传递到下一层之前。


三、HGNetV2的代码

需要注意的是HGNetV2这个版本的所需组件已经集成在YOLOv8的仓库了,所以我们无需做任何的代码层面的改动,只需要设计yaml文件来配合Neck部分融合特征即可了,但是我还是把代码放在这里,供有兴趣的读者看一下,也和上面的结构进行一个对照。主要的三个结构HGStem,HGBlock,DWConv。

class HGStem(nn.Module):"""StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py"""def __init__(self, c1, cm, c2):"""Initialize the SPP layer with input/output channels and specified kernel sizes for max pooling."""super().__init__()self.stem1 = Conv(c1, cm, 3, 2)self.stem2a = Conv(cm, cm // 2, 2, 1, 0)self.stem2b = Conv(cm // 2, cm, 2, 1, 0)self.stem3 = Conv(cm * 2, cm, 3, 2)self.stem4 = Conv(cm, c2, 1, 1)self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True)def forward(self, x):"""Forward pass of a PPHGNetV2 backbone layer."""x = self.stem1(x)x = F.pad(x, [0, 1, 0, 1])x2 = self.stem2a(x)x2 = F.pad(x2, [0, 1, 0, 1])x2 = self.stem2b(x2)x1 = self.pool(x)x = torch.cat([x1, x2], dim=1)x = self.stem3(x)x = self.stem4(x)return xclass HGBlock(nn.Module):"""HG_Block of PPHGNetV2 with 2 convolutions and LightConv.https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py"""def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=True):"""Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""super().__init__()block = LightConv if lightconv else Convself.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze convself.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation convself.add = shortcut and c1 == c2def forward(self, x):"""Forward pass of a PPHGNetV2 backbone layer."""y = [x]y.extend(m(y[-1]) for m in self.m)y = self.ec(self.sc(torch.cat(y, 1)))return y + x if self.add else ydef autopad(k, p=None, d=1):  # kernel, padding, dilation"""Pad to 'same' shape outputs."""if d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""default_act = nn.SiLU()  # default activationdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):"""Initialize Conv layer with given arguments including activation."""super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):"""Apply convolution, batch normalization and activation to input tensor."""return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):"""Perform transposed convolution of 2D data."""return self.act(self.conv(x))class DWConv(Conv):"""Depth-wise convolution."""def __init__(self, c1, c2, k=1, s=1, d=1, act=True):  # ch_in, ch_out, kernel, stride, dilation, activation"""Initialize Depth-wise convolution with given parameters."""super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)


四、手把手教你添加HGNetV2 

这里不需要改动什么,如果你的版本是老版本的,没有集成RT-DETR的版本(大部分都集成了已),那么大家可以下载一个新版本可以参考其中的怎么改,我这里就不在描述,否则拉下某一步在导致大家报错。


4. 1 HGNetV2-l的yaml文件(此为对比试验版本)

此版本的信息为:YOLOv10n-HGNet-l summary: 445 layers, 21002054 parameters, 21002038 gradients, 90.5 GFLOPs

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]backbone:# [from, repeats, module, args]- [-1, 1, HGStem, [32, 48]]  # 0-P2/4- [-1, 6, HGBlock, [48, 128, 3]]  # stage 1- [-1, 1, DWConv, [128, 3, 2, 1, False]]  # 2-P3/8- [-1, 6, HGBlock, [96, 512, 3]]   # stage 2- [-1, 1, DWConv, [512, 3, 2, 1, False]]  # 4-P3/16- [-1, 6, HGBlock, [192, 1024, 5, True, False]]  # cm, c2, k, light, shortcut- [-1, 6, HGBlock, [192, 1024, 5, True, True]]- [-1, 6, HGBlock, [192, 1024, 5, True, True]]  # stage 3- [-1, 1, DWConv, [1024, 3, 2, 1, False]]  # 8-P4/32- [-1, 6, HGBlock, [384, 2048, 5, True, False]]  # stage 4- [-1, 1, SPPF, [1024, 5]] # 10- [-1, 1, PSA, [1024]] # 11# YOLOv10.0n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]] # 12- [[-1, 7], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 14- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 3], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 17 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 14], 1, Concat, [1]] # cat head P4- [-1, 3, C2f, [512]] # 20 (P4/16-medium)- [-1, 1, SCDown, [512, 3, 2]]- [[-1, 11], 1, Concat, [1]] # cat head P5- [-1, 3, C2fCIB, [1024, True, True]] # 23 (P5/32-large)- [[17, 20, 23], 1, v10Detect, [nc]] # Detect(P3, P4, P5)


4.2 HGNetV2-x的yaml文件

此版本的信息为:YOLOv10n-HGNet-x summary: 531 layers, 24673702 parameters, 24673686 gradients, 67.3 GFLOPs

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'# [depth, width, max_channels]n: [0.33, 0.25, 1024]backbone:# [from, repeats, module, args]- [-1, 1, HGStem, [32, 64]]  # 0-P2/4- [-1, 6, HGBlock, [64, 128, 3]]  # stage 1- [-1, 1, DWConv, [128, 3, 2, 1, False]]  # 2-P3/8- [-1, 6, HGBlock, [128, 512, 3]]- [-1, 6, HGBlock, [128, 512, 3, False, True]]   # 4-stage 2- [-1, 1, DWConv, [512, 3, 2, 1, False]]  # 5-P3/16- [-1, 6, HGBlock, [256, 1024, 5, True, False]]  # cm, c2, k, light, shortcut- [-1, 6, HGBlock, [256, 1024, 5, True, True]]- [-1, 6, HGBlock, [256, 1024, 5, True, True]]- [-1, 6, HGBlock, [256, 1024, 5, True, True]]- [-1, 6, HGBlock, [256, 1024, 5, True, True]]  # 10-stage 3- [-1, 1, DWConv, [1024, 3, 2, 1, False]]  # 11-P4/32- [-1, 6, HGBlock, [512, 2048, 5, True, False]]- [-1, 6, HGBlock, [512, 2048, 5, True, True]]  # 13-stage 4- [-1, 1, SPPF, [1024, 5]] # 14- [-1, 1, PSA, [1024]] # 15# YOLOv10.0n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 10], 1, Concat, [1]] # cat backbone P4- [-1, 3, C2f, [512]] # 18- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 3, C2f, [256]] # 21 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 18], 1, Concat, [1]] # cat head P4- [-1, 3, C2f, [512]] # 24 (P4/16-medium)- [-1, 1, SCDown, [512, 3, 2]]- [[-1, 15], 1, Concat, [1]] # cat head P5- [-1, 3, C2fCIB, [1024, True, True]] # 27 (P5/32-large)- [[21, 24, 27], 1, v10Detect, [nc]] # Detect(P3, P4, P5)


五、运行成功记录

5.1 运行记录


5.2 训练代码 

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLOif __name__ == '__main__':model = YOLO('ultralytics/cfg/models/v8/yolov8-C2f-FasterBlock.yaml')# model.load('yolov8n.pt') # loading pretrain weightsmodel.train(data=r'替换数据集yaml文件地址',# 如果大家任务是其它的'ultralytics/cfg/default.yaml'找到这里修改task可以改成detect, segment, classify, posecache=False,imgsz=640,epochs=150,single_cls=False,  # 是否是单类别检测batch=4,close_mosaic=10,workers=0,device='0',optimizer='SGD', # using SGD# resume='', # 如过想续训就设置last.pt的地址amp=False,  # 如果出现训练损失为Nan可以关闭ampproject='runs/train',name='exp',)


六、本文总结

 到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv10改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

专栏回顾:YOLOv10改进系列专栏——本专栏持续复习各种顶会内容——科研必备 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/45207.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java项目中,常用的SQL语句

常用的命令: 1.数据的增删改查 1.插入数据(进行注册) 语法 1: --第一种: INSERT INTO 表名(列名 1,列名 2, …) ; insert into tablename(member1,member3) valuse(,); --第二种: INSERT INTO 表名 VALUES(值 1,值 …

Python编程实例-Python的隐藏特性

Python的隐藏特性 文章目录 Python的隐藏特性1、Python中的下划线(_)2、通过解析树进行正则表达式调试3、省略号(...)4、dir()函数5、Lambda 函数6、链式比较运算符7、zip()函数8、修饰器9、上下文管理器和with语句10、生成器和yield语句11、元类(Metaclass)12、小结Python…

MySQL版本升级

MySQL版本升级 升级说明 MySQL升级的实质 对数据字典的升级 数据字典有:mysql、information_schema、performance_schema、sys schema。 MySQL升级的两种方式 大版本升级(需要考虑业务的可用性) 5.6 to 5.75.6 to 8.05.7 to 8.0 小版…

使用大模型进行SQL迁移的实践总结

在现代化的项目管理和运维工作中,利用大模型(如ChatGPT)处理复杂任务已成为一种高效手段。近期我们在一个项目中尝试利用大模型将MySQL导出的SQL语句迁移为达梦信创数据库格式,通过几轮操作,我们深刻体会到提示词工程的…

旷野之间4 - 100 个 Kubernetes 面试问题及答案

100 个 Kubernetes 面试问题及答案 Kubernetes 简介 什么是 Kubernetes? Kubernetes 是一个开源容器编排平台,可自动部署、扩展和管理容器化应用程序。 什么是容器? 容器是一个轻量级、独立的、可执行软件包,其中包含运行应用…

QT--槽函数和控件篇一

一、自定义信号和槽函数 QT 将信号和槽集成在QObject类中;发送者和接受者都必须继承这个类。Q_OBJECT宏是实现信号和槽机制、属性系统和元对象系统的关键。Q_OBJECT宏必须出现在每个使用信号和槽的类中,因为它为这些类提供了必要的元数据和功能。信号在…

mindspore打卡23天之基于MobileNetv2的垃圾分类函数式自动微分

基于MobileNetv2的垃圾分类 本文档主要介绍垃圾分类代码开发的方法。通过读取本地图像数据作为输入,对图像中的垃圾物体进行检测,并且将检测结果图片保存到文件中。 1、实验目的 了解熟悉垃圾分类应用代码的编写(Python语言)&a…

从0开始的STM32HAL库学习5

旋转编码计数器 修改中断代码 void EXTI0_IRQHandler(void) {/* USER CODE BEGIN EXTI0_IRQn 0 */if(__HAL_GPIO_EXTI_GET_FLAG(PB0_Pin)){if(HAL_GPIO_ReadPin(PB1_GPIO_Port, PB1_Pin)GPIO_PIN_RESET){count--;}/* USER CODE END EXTI0_IRQn 0 */HAL_GPIO_EXTI_IRQHandler…

php file_get_contents https 请求 伪造user_agent

在PHP中,使用file_get_contents()函数来发起HTTPS请求时,可以通过设置HTTP请求头来伪造User-Agent。file_get_contents()函数本身不直接支持设置请求头,可以通过上下文(context)参数来实现这一点。 // 目标URL $url …

Java技术栈总结:容器集合篇

一、List 1、ArrayList (1)底层数据结构 底层数据结构为数组。数组是一种用连续的内存空间存储相同数据类型数据的线性数据结构。 Q:为什么数组索引下标从0开始? A:从0开始,对应寻址公式:a[i]…

Vuetify3 + Nuxt3:跳转详情

在Nuxt 3中&#xff0c;使用v-data-table组件时&#xff0c;我们想要在点击某个行或者某个单元格时进行页面跳转。可以通过监听组件的点击事件&#xff0c;并使用useRouter来实现页面跳转。 <template><v-data-table:headers"headers":items"items&qu…

dolphinScheduler + hive + datax报错记录

1、参数错误 报错信息 [INFO] 2024-04-11 06:43:18.386 - [taskAppIdTASK-29-3301-84461]:[498] - after replace sql , preparing : insertoverwrite table mis_month partition (dt) select nvl(sl.slid , ) as id,--水量 IDnvl(sl.hh …

MongoDB教程(二):mongoDB引用shell

&#x1f49d;&#x1f49d;&#x1f49d;首先&#xff0c;欢迎各位来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里不仅可以有所收获&#xff0c;同时也能感受到一份轻松欢乐的氛围&#xff0c;祝你生活愉快&#xff01; 文章目录 引言一、MongoD…

了解AsyncRotationController

概述 基于android 15.0, 以从强制横屏App上滑退回桌面流程来分析 frameworks/base/services/core/java/com/android/server/wm/AsyncRotationController.javaAsyncRotationController 是一种控制器&#xff0c;用于处理设备显示屏旋转时非活动窗口的异步更新。这种控制器通过…

设计模式——适配器设计模式

设计模式——适配器设计模式 适配器设计模式1.1 基本介绍1.2 工作原理1.3 类适配器模式1.3.1 基本介绍1.3.2 示例1.3.3 代码实现1.3.4 注意事项 1.4 对象适配器模式1.4.1 基本介绍1.4.2 示例1.4.3 代码实现1.4.4 注意事项 1.5 接口适配器模式1.5.1 基本介绍1.5.2 示例1.5.3 代码…

如何处理Java中数据结构(如HashMap)导致的性能瓶颈

在Java开发过程中&#xff0c;HashMap 是一种常用的数据结构&#xff0c;它提供了高效的键值对存储和快速的查找、插入和删除操作。然而&#xff0c;在某些情况下&#xff0c;HashMap 可能会导致性能瓶颈。本文将探讨这些性能瓶颈的成因&#xff0c;并提供一些优化策略。 一、…

Webkit简介以及工作流程

Webkit简介 WebKit是一个开源的浏览器引擎&#xff0c;最初由苹果公司基于KHTML&#xff08;K Desktop Environment的HTML渲染引擎&#xff09;开发&#xff0c;并广泛应用于Safari浏览器。随着时间的推移&#xff0c;WebKit也被其他多款浏览器和应用所采用&#xff0c;成为We…

pudb: Python的图形化调试器

文章目录 pudb原理基础使用安装pudb启动pudb界面介绍常用操作 高级使用条件断点表达式求值自定义布局搜索和过滤插件和扩展 结论 pudb原理 pudb是一个基于文本的图形化Python调试器&#xff0c;它结合了pdb的强大调试功能与图形用户界面的易用性。pudb通过提供一个可视化的界面…

【操作系统】阻塞队列以及生产者消费者模型

目录 阻塞队列一. 概念二. 标准库中的阻塞队列三. 生产者消费者模型四. 阻塞队列实现 总结 阻塞队列 一. 概念 阻塞队列是⼀种特殊的队列.也遵守"先进先出"的原则. 阻塞队列能是⼀种线程安全的数据结构,并且具有以下特性: 当队列满的时候,继续⼊队列就会阻塞,直到…

Splashtop 在医疗与制药领域的业务增长近五倍

2024年7月10日 加利福尼亚州库比蒂诺 Splashtop 是安全远程访问和 IT 支持解决方案领域的领先企业&#xff0c;该公司今天宣布&#xff0c;在医疗与制药领域业务同比增长492%&#xff0c;取得了里程碑式的成就。快速发展的数字实验室环境和持续的网络安全威胁需要实施无缝、安…