[AI 大模型] 百度 文心一言

文章目录

    • [AI 大模型] 百度 文心一言
      • 简介
      • 模型架构
      • 发展
      • 新技术和优势
      • API 代码示例


[AI 大模型] 百度 文心一言

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0DwAIh0T-1720667576892)(https://i-blog.csdnimg.cn/direct/283919e5d78b4951ba1ade5dcfcb9cea.png#pic_center)]

简介

**百度文心一言(ERNIE Bot)**是百度推出的全新一代知识增强大语言模型,旨在通过与人对话互动、回答问题和协助创作,帮助用户高效便捷地获取信息、知识和灵感。

文心一言融合了数万亿数据和数千亿知识,具备强大的知识增强、检索增强和对话增强能力。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-v3fx7hgi-1720667576896)(https://i-blog.csdnimg.cn/direct/f2ba2c15d0c946a4be823e1200c90025.jpeg#pic_center)]

模型架构

文心一言基于百度的飞桨深度学习平台和文心知识增强大模型,采用了增强的 Transformer 架构。

其核心技术包括:

  • 知识增强:通过融合大规模知识图谱,提升模型的知识理解和推理能力。
  • 检索增强:结合实时检索技术,确保生成内容的准确性和时效性。
  • 对话增强:优化对话生成和理解能力,使模型能够更自然地与用户互动。

此外,文心一言还采用了有监督精调、人类反馈强化学习(RLHF)和提示技术,进一步提升了模型的性能和安全性。

发展

文心一言 的发展历程可以追溯到 2019 年 3 月,百度发布了首个知识增强大模型 ERNIE 1.0。此后,百度不断迭代升级,推出了 ERNIE 2.0、ERNIE 3.0 和 ERNIE 3.5 等版本。
2023 年 3 月,百度正式发布了文心一言,并在 2023 年 8 月全面向公众开放。
截至 2024 年 4 月,文心一言的用户数已超过 2 亿,API 日均调用量突破 2 亿。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-p9IBTePN-1720667576897)(https://i-blog.csdnimg.cn/direct/72ec32ba834b480bb3bebcc3c2d0136e.jpeg#pic_center)]

新技术和优势

  1. 多模态能力:文心一言能够处理文本、图像、音频等多种数据类型,提供高质量的多模态输出。
  2. 高效架构:采用增强的 Transformer 和知识图谱技术,使得文心一言在训练和推理过程中更加高效。
  3. 长上下文理解:文心一言支持长达 30,000 个 token 的上下文窗口,显著提升了模型在长文本处理中的表现。
  4. 灵活性:文心一言提供了多种尺寸和配置,能够在从数据中心到边缘设备的各种环境中高效运行。
  5. 广泛应用:文心一言已经被多个行业的企业采用,用于构建自定义生成式 AI 模型,提升了企业的创新能力和竞争优势。

API 代码示例

以下是如何使用文心一言 API 进行开发的示例:

示例 1:文本生成

import requests
import json# 获取 access_token
def get_access_token(api_key, secret_key):url = "https://aip.baidubce.com/oauth/2.0/token"params = {"grant_type": "client_credentials","client_id": api_key,"client_secret": secret_key}response = requests.post(url, params=params)return response.json().get("access_token")# 文本生成请求
def generate_text(prompt, max_tokens, api_key, secret_key):access_token = get_access_token(api_key, secret_key)url = f"https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions?access_token={access_token}"payload = json.dumps({"messages": [{"role": "user", "content": prompt}],"max_tokens": max_tokens})headers = {'Content-Type': 'application/json'}response = requests.post(url, headers=headers, data=payload)return response.json()# 示例调用
api_key = "YOUR_API_KEY"
secret_key = "YOUR_SECRET_KEY"
prompt = "写一篇关于人工智能未来发展的文章。"
response = generate_text(prompt, 150, api_key, secret_key)
print(response['result'])

示例 2:对话生成

import requests
import json# 获取 access_token
def get_access_token(api_key, secret_key):url = "https://aip.baidubce.com/oauth/2.0/token"params = {"grant_type": "client_credentials","client_id": api_key,"client_secret": secret_key}response = requests.post(url, params=params)return response.json().get("access_token")# 对话生成请求
def generate_conversation(messages, api_key, secret_key):access_token = get_access_token(api_key, secret_key)url = f"https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions?access_token={access_token}"payload = json.dumps({"messages": messages})headers = {'Content-Type': 'application/json'}response = requests.post(url, headers=headers, data=payload)return response.json()# 示例调用
api_key = "YOUR_API_KEY"
secret_key = "YOUR_SECRET_KEY"
messages = [{"role": "system", "content": "你是一个乐于助人的助手。"},{"role": "user", "content": "你好!"}
]
response = generate_conversation(messages, api_key, secret_key)
print(response['result'])

示例 3:情感分析

import requests
import json# 获取 access_token
def get_access_token(api_key, secret_key):url = "https://aip.baidubce.com/oauth/2.0/token"params = {"grant_type": "client_credentials","client_id": api_key,"client_secret": secret_key}response = requests.post(url, params=params)return response.json().get("access_token")# 情感分析请求
def analyze_sentiment(text, api_key, secret_key):access_token = get_access_token(api_key, secret_key)url = f"https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions?access_token={access_token}"payload = json.dumps({"messages": [{"role": "user", "content": text}]})headers = {'Content-Type': 'application/json'}response = requests.post(url, headers=headers, data=payload)return response.json()# 示例调用
api_key = "YOUR_API_KEY"
secret_key = "YOUR_SECRET_KEY"
text = "我今天感觉非常开心!"
response = analyze_sentiment(text, api_key, secret_key)
print(response['result'])

百度文心一言的推出标志着 AI 技术的又一次飞跃,为开发者和企业提供了强大的工具,推动了 AI 应用的广泛普及和创新。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/44996.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java-mysql5.7 相关安装和配置

在 Java 中使用 MySQL 5.7 进行开发之前,首先需要安装和配置 MySQL 数据库。以下是详细的步骤,涵盖了 MySQL 5.7 的下载、安装、基本配置以及如何在 Java 中使用 JDBC 连接 MySQL 数据库。 ### 一、安装 MySQL 5.7 #### 1. 下载 MySQL 5.7 前往 MySQL …

Lambda表达式与函数式工具应用详解

在现代编程中,Lambda表达式和函数式工具是处理数据、实现简洁代码的重要工具。尤其是在函数式编程范式中,它们发挥着至关重要的作用。本文将从定义、语法、应用场景到具体案例,详细阐述Lambda表达式和函数式工具在Python和Java等编程语言中的…

Syslog 管理工具

Syslog常被称为系统日志或系统记录,是一种用来在互联网协议(TCP/IP)的网上中传递记录档消息的标准,常用来指涉实际的Syslog 协议,或者那些提交syslog消息的应用程序或数据库。 系统日志协议(Syslog&#x…

VBA即用型代码手册:删除完全空白的行

我给VBA下的定义:VBA是个人小型自动化处理的有效工具。可以大大提高自己的劳动效率,而且可以提高数据的准确性。我这里专注VBA,将我多年的经验汇集在VBA系列九套教程中。 作为我的学员要利用我的积木编程思想,积木编程最重要的是积木如何搭建…

星辰考古:TiDB v4.0 进化前夜

前情回顾TiDB v4 时间线TiDB v4 新特性 TiDBTiKVPDTiFlashTiCDCTiDB v4 兼容性变化 TiDBTiKVPD其他TiDB 社区互助升级活动TiDB 3.0.20 升级到 4.0.16 注意事项升级速览直观变化总结素材来源🌻 往期精彩 ▼ 前情回顾 在前面的章节中,我们共同梳理了 TiDB …

BUCK电源芯片,电气参数,极限参数,工作特性,引脚功能

概述 在应用DC-DC开关电源芯片时,通常需要关注以下参数,同步与非同步,输入电压,输入电流,输出电压,输出电流,输入输出电容的选择;mosfet选型,电感选型,功耗&a…

基于深度学习的点云降噪

基于深度学习的点云降噪是一种利用深度学习模型处理三维点云数据,以去除噪声并恢复点云的原始形状和细节的方法。点云数据广泛应用于自动驾驶、机器人导航、3D扫描和虚拟现实(VR)等领域,因此高质量的点云数据处理至关重要。以下是…

人工智能算法工程师(中级)课程10-PyTorch神经网络之卷积神经网络与代码详解

大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程10-PyTorch神经网络之卷积神经网络实战与代码详解。卷积神经网络(CNN)是一种广泛应用于图像识别、目标检测、视频分析等领域的深度学习模型。本文将详细介绍卷积…

vue-router history 模式下将所有资源文件js/css/img都存放在oss 利用 cdn 访问整体思路汇总

背景 我们有一个域名https://example.com,但是ssl证书很贵,搞子域名来承接新站点有点费钱,所以我们想用一个目录https://example.com/admin/ 来作为管理后台的站点,这个站点是单页面应用,我又想让其用history router的…

Redis基础教程(十六):Redis Stream

💝💝💝首先,欢迎各位来到我的博客,很高兴能够在这里和您见面!希望您在这里不仅可以有所收获,同时也能感受到一份轻松欢乐的氛围,祝你生活愉快! 💝&#x1f49…

Qt常用基础控件总结—带边框的部件(QFrame和QLabel)

带边框的部件 框架控件QFrame类 QFrame类介绍 QFrame 类是带有边框的部件的基类,带边框部件的特点是有一个明显的边框,QFrame类就是用来实现边框的不同效果的(把这种效果称为边框样式),所有继承自 QFrame 的子类都可以使用 QFrame 类实现的效果。 部件通常是矩形的(其他…

谷粒商城学习笔记-18-快速开发-配置测试微服务基本CRUD功能

文章目录 一,product模块整合mybatis-plus1,引入依赖2,product启动类指定mapper所在包3,在配置文件配置数据库连接信息4,在配置文件中配置mapper.xml映射文件信息 二,单元测试1,编写测试代码&am…

凯中精密:下一个正丹吗?

业绩预增超十倍! 又一匹A股业绩黑马诞生——凯中精密 近期,凯中精密发布2024年上半年业绩预告,预计净利润增速高达1068%至1402%。 从23年的209.54%到24年Q1惊人的6885.78%,再到24年上半年的十倍增速,这条业绩黑马利润…

【python算法学习2】冒泡排序的写法

目的:学习冒泡排序的写法 1 定义 1.1百度百科 冒泡排序_百度百科在程序设计语言中,排序算法主要有冒泡排序、快速排序、选择排序以及计数排序等。冒泡排序(Bubble Sort)是最简单和最通用的排序方法,其基本思想是&…

C# 中,使用 LINQ 示例 备忘

语言集成查询 (LINQ) 是一系列直接将查询功能集成到 C# 语言的技术统称。 数据查询历来都表示为简单的字符串,没有编译时类型检查或 IntelliSense 支持。 此外, … 对于编写查询的开发者来说,LINQ 最明显的“语言集成”部分就是查询表达式。 …

Elasticsearch基础教程

目录 引言Elasticsearch的特点 分布式架构实时搜索和分析强大的全文搜索RESTful接口高可用性和容错性 Elasticsearch的核心概念 索引文档分片和副本节点和集群 Elasticsearch的使用场景 日志和事件数据分析全文搜索实时数据处理数据可视化 安装和配置Elasticsearch的优化 性能…

设计模式 - 最简单最有趣的方式讲述

别名《我替你看Head First设计模式》 本文以故事的形式带你从0了解设计模式,在其中你仅仅是一名刚入职的实习生,在项目中摸爬滚打。(以没有一行真正代码的形式,让你无压力趣味学习) 设计模式 策略模式观察者模式装饰者…

技术难点思考SpringBoot如何集成Jmeter开发

技术难点思考SpringBoot如何集成Jmeter开发 需求概述 构建一个高性能的压测平台,该平台需通过Spring Boot框架调用JMeter进行自动化压力测试。 解决方案一:使用Runtime类调用外部进程 技术概述 Java的Runtime类提供了与操作系统交互的接口&#xff0…

springboot仪器校准系统-计算机毕业设计源码51504

摘 要 随着科技的不断发展。测量设备的准确性和可靠性对于各行各业都至关重要。仪器校准系统作为确保测量设备性能的重要手段,已成为工业生产、科学研究、质量控制等领域不可或缺的一部分。本文对仪器校准系统进行了概述,探讨了校准方法、流程、特点、应…

Apache防盗链、网页压缩、网页缓存

目录 网页压缩 类型 示例 动态添加模块操作步骤 重装Apache操作步骤 网页缓存 示例 操作步骤 隐藏版本信息 操作步骤 Apache防盗链 定义 原理 配置防盗链实验环境 实验环境 本地图片盗链示例 操作步骤 防盗链示例 操作步骤 网页压缩 网站的访问速度是由多个…