一. 加载数据集
编写工具类,实现数据集的加载
import keras"""
加载数据集工具类
"""class DatasetLoader:def __init__(self, path_url, image_size=(224, 224), batch_size=32, class_mode='categorical'):self.path_url = path_urlself.image_size = image_sizeself.batch_size = batch_sizeself.class_mode = class_mode# 不使用图像增强def load_data(self):# 加载训练数据集train_data = keras.preprocessing.image_dataset_from_directory(self.path_url + '/train', # 训练数据集的目录路径image_size=self.image_size, # 调整图像大小batch_size=self.batch_size, # 每批次的样本数量label_mode=self.class_mode, # 类别模式:返回one-hot编码的标签)# 加载验证数据集val_data = keras.preprocessing.image_dataset_from_directory(self.path_url + '/validation', # 验证数据集的目录路径image_size=self.image_size, # 调整图像大小batch_size=self.batch_size, # 每批次的样本数量label_mode=self.class_mode # 类别模式:返回one-hot编码的标签)# 加载测试数据集test_data = keras.preprocessing.image_dataset_from_directory(self.path_url + '/test', # 验证数据集的目录路径image_size=self.image_size, # 调整图像大小batch_size=self.batch_size, # 每批次的样本数量label_mode=self.class_mode # 类别模式:返回one-hot编码的标签)class_names = train_data.class_namesreturn train_data, val_data, test_data, class_names
二. 训练模型完整代码
import keras
from keras import layersfrom utils.dataset_loader import DatasetLoader"""
使用MobileNetV2,实现图像多分类
"""# 模型训练地址
PATH_URL = '../data/fruits'
# 训练曲线图
RESULT_URL = '../results/fruits'
# 模型保存地址
SAVED_MODEL_DIR = '../saved_model/fruits'# 图片大小
IMG_SIZE = (224, 224)
# 定义图像的输入形状
IMG_SHAPE = IMG_SIZE + (3,)
# 数据加载批次,训练轮数
BATCH_SIZE, EPOCH = 32, 16# 训练模型
def train():# 实例化数据集加载工具类dataset_loader = DatasetLoader(PATH_URL, IMG_SIZE, BATCH_SIZE)train_ds, val_ds, test_ds, class_total = dataset_loader.load_data()# 构建 MobileNet 模型base_model = keras.applications.MobileNetV2(input_shape=IMG_SHAPE, include_top=False)# 将模型的主干参数进行冻结base_model.trainable = Falsemodel = keras.Sequential([layers.Rescaling(1. / 127.5, offset=-1, input_shape=IMG_SHAPE),# 设置主干模型base_model,# 对主干模型的输出进行全局平均池化layers.GlobalAveragePooling2D(),# 通过全连接层映射到最后的分类数目上layers.Dense(len(class_total), activation='softmax')])# 编译模型model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])# 模型结构model.summary()# 指明训练的轮数epoch,开始训练model.fit(train_ds, validation_data=val_ds, epochs=EPOCH)# 测试loss, accuracy = model.evaluate(test_ds)# 输出结果print('Mobilenet test accuracy :', accuracy, ',loss :', loss)# 保存模型 savedModel格式model.export(filepath=SAVED_MODEL_DIR)if __name__ == '__main__':train()
训练模型输出如下:
模型结构:
训练进度:主要看最下边一行输出,一轮训练完成会显示训练集和验证集的正确率。
验证正确率:
保存的模型:
三. 函数式调用方式
以后的所有讲解,都基于函数式方式进行,因为函数式调用比较灵活。
# 函数式调用方式
def train1():# 实例化数据集加载工具类dataset_loader = DatasetLoader(PATH_URL, IMG_SIZE, BATCH_SIZE)train_ds, val_ds, test_ds, class_total = dataset_loader.load_data()inputs = keras.Input(shape=IMG_SHAPE)# 加载预训练的 MobileNetV2 模型,不包括顶层分类器,并在 Rescaling 层之后连接base_model = keras.applications.MobileNetV3Large(weights='imagenet', include_top=False, input_tensor=inputs)# 冻结 MobileNetV2 的所有层,以防止在初始阶段进行权重更新for layer in base_model.layers:layer.trainable = False# 在 MobileNetV2 之后添加自定义的顶层分类器x = layers.GlobalAveragePooling2D()(base_model.output)predictions = layers.Dense(len(class_total), activation='softmax')(x)# 构建最终模型model = keras.Model(inputs=base_model.input, outputs=predictions)# 编译模型model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])# 查看模型结构model.summary()model.fit(train_ds, validation_data=val_ds, epochs=EPOCH)# 测试loss, accuracy = model.evaluate(test_ds)# 输出结果print('Mobilenet test accuracy :', accuracy, ',loss :', loss)# 保存模型 savedModel格式model.export(filepath=SAVED_MODEL_DIR)
四. 保存训练过程曲线图
在训练模型时,我们不可能时时盯着训练数据结果,如果把训练过程曲线保存成图片,这样就比较方便查看。
在项目中编写一个工具类如下:
上边代码简单改造:
# 训练模型history = model.fit(train_ds, validation_data=val_ds, epochs=EPOCH)# 保存曲线图Utils.trainResult(history, RESULT_URL)
曲线图如下:训练集和验证集准确率上升,损失率下降,这是完美的表现。
五. 模型可视化批量测试
编写可视化批量测试工具类:
import keras
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.patches import FancyBboxPatchfrom utils.dataset_loader import DatasetLoader"""
模型工具类
"""class ModelUtil:def __init__(self, saved_model_dir, path_url):self.save_model_dir = saved_model_dir # savedModel 模型保存地址self.path_url = path_url # 模型训练数据地址# 批量识别 进行可视化显示def batch_evaluation(self, class_mode='categorical', image_size=(224, 224), num_images=25):dataset_loader = DatasetLoader(self.path_url, image_size=image_size, class_mode=class_mode)train_ds, val_ds, test_ds, class_names = dataset_loader.load_data()# 加载savedModel模型tfs_layer = keras.layers.TFSMLayer(self.save_model_dir)# 创建一个新的 Keras 模型,包含 TFSMLayermodel = keras.Sequential([keras.Input(shape=image_size + (3,)), # 根据你的模型的输入形状tfs_layer])plt.figure(figsize=(10, 10))for images, labels in test_ds.take(1):# 使用模型进行预测outputs = model.predict(images)for i in range(num_images):plt.subplot(5, 5, i + 1)image = np.array(images[i]).astype("uint8")plt.imshow(image)index = int(np.argmax(outputs[i]))prediction = outputs[i][index]percentage_str = "{:.2f}%".format(prediction * 100)plt.title(f"{class_names[index]}: {percentage_str}")plt.axis("off")plt.subplots_adjust(hspace=0.5, wspace=0.5)plt.show()
使用工具类:
if __name__ == '__main__':# train()model_util = ModelUtil(SAVED_MODEL_DIR, PATH_URL)model_util.batch_evaluation()