机器学习与深度学习:区别与联系(含工作站硬件推荐)

一、机器学习与深度学习区别

机器学习(ML:Machine Learning)与深度学习(DL:Deep Learning)是人工智能(AI)领域内两个重要但不同的技术。它们在定义、数据依赖性以及硬件依赖性等方面存在显著差异。先来看一些主要区别:

机器学习

深度学习

人工智能的一个子集

机器学习的一个子集

可以在较小的数据集上进行训练

需要大量数据

需要更多人为干预来纠正和学习

从环境和过去的错误中自我学习

训练时间较短,准确率较低

训练时间更长,准确率更高

建立简单的线性相关性

产生非线性、复杂的关联

可以在 CPU(中央处理器)上进行训练

需要专门的 GPU(图形处理单元)进行训练

具体分析如下:

1、定义

  • 机器学习:机器学习是人工智能的一个子集,通过让机器从经验中自我改进来解决问题。它主要依赖于算法和统计模型,使计算机能够根据输入数据做出预测或决策。
  • 深度学习:深度学习是机器学习的一个子集,它采用多层人工神经网络来学习数据的高级特征。深度学习模型通常包括多个隐藏层,每一层都对输入数据进行更深入的抽象和处理。

2、数据依赖性

  • 机器学习:可以在少量数据的情况下进行有效预测。它适用于小规模数据集,并且可以通过手动特征提取来提高预测准确性
  • 深度学习:需要大量标注好的训练数据来识别复杂的模式。由于其多层复杂结构,深度学习模型可以从大量数据中自动提取高级特征,适用于大规模数据集。

3、硬件依赖性

  • 机器学习:可以在低端机器上顺利运行,不需要大量的计算能力。常见的机器学习算法如支持向量机(SVM)和决策树对硬件要求较低。
    1. CPU:普通桌面级处理器即可满足大多数机器学习任务。
    2. GPU:对GPU的需求相对较低,甚至可以不用GPU仅依靠CPU进行计算。若使用GPU,中低端的消费级显卡即可满足大多数需求。
    3. 内存 (RAM):较小的内存即可满足大多数机器学习任务。32GB或64GB的RAM对于常见的机器学习模型足够使用。
    4. (Disk):可以使用固态硬盘(SSD)和机械硬盘(HDD)的组合,保证数据的快速读写和大容量存储。512GB的SSD加上2TB的HDD通常足够。
    5. 散热系统:由于硬件负荷较低,常规风冷散热系统即可满足需求。
    6. 电源供应:电源需求较低,一般500W至650W的电源足以应对。
    7. 主板 (Motherboard):标准桌面主板即可满足需求,无需特别扩展能力。
    8. 网络连接:普通的局域网连接即可,无需特别高速的网络需求。
    9. 工作站推荐惠普(HP)Z1 G9Z2 G9Z4 G5及以上配置。
  • 深度学习:对硬件性能要求更高,需要高性能CPU、强大的GPU、大容量RAM和高速储存,以及高效的散热和电源系统。
    1. CPU:推荐使用服务器级别的CPU,英特尔的Xeon系列或AMD的EPYC系列;
    2. GPU:因为其运算涉及大量的矩阵乘法运算,模型层次复杂而需要强大的计算资源,推荐使用NVIDIA的高端GPU,如RTX 4090、RTX A6000或专业级的Tesla A100。这些GPU拥有大量CUDA核心和高显存带宽,能够处理复杂的神经网络和大规模数据集。
    3. 内存 (RAM):需要大量的RAM来存储更大的数据集和模型。建议至少128GB起步,对于大规模训练任务可能需要256GB或更多。
    4. (Disk)强调高速读写能力,推荐使用大容量的NVMe SSD。例如,1TB或2TB的NVMe SSD可以大幅缩短数据加载和模型训练时间。
    5. 散热系统:高负荷运转需要高效的散热系统。推荐使用水冷或高级风冷系统,特别是在多GPU配置中。
    6. 电源供应:需要高功率且稳定的电源供应,推荐1000W以上的电源,以确保多GPU和其他高性能组件的稳定运行。
    7. 主板 (Motherboard):需要具备多个PCIe插槽的主板,以容纳多张GPU和其他扩展设备。
    8. 网络连接:可能需要高速网络接口(如10Gbe Ethernet),以便在多节点训练时快速数据传输。
    9. 工作站推荐复杂的神经网络和大规模数据集,推荐惠普(HP)Z8 G5,可用于具有实时光线追踪、虚拟制作、VFX、色彩分级、有限元分析、ML/AI/DL、模型训练、微调、推理、计算机视觉和自然语言处理的 3D 渲染。配备 2 个 Intel® Xeon® 可扩展处理器,最高可达 64 个内核,最多 2 个 NVIDIA RTX™ 6000 Ada GPU 或 2 个 AMD Radeon™ PRO W6800 GPU,内存高达 1TB DDR5 ECC,存储最高可达 136 TB,7 个 PCIe 插槽(最高可达第 5 代)。

 

911a50fed971458bb469057c8a34d8e8.png

惠普(HP)Z8 G5 工作站台式电脑

4、特征化过程

  • 机器学习:需要人为的特征选择,即开发者需要明确定义哪些特征对模型预测有帮助。例如,在图像处理任务中,可能需要手动选择颜色、纹理等特征。
  • 深度学习:通过多层网络结构自动提取复杂特征,无需人工干预。这种方法特别适合于非结构化数据,如图像、语音和文本。

5、学习方法

  • 机器学习:将学习过程分为易于管理的部分单独处理,然后将结果合并。这种分步骤的方法使得机器学习模型相对简单明了。
  • 深度学习:通过端到端的学习方法,直接从输入数据到输出结果,整个过程中很少需要人为干预。这使得深度学习特别适用于高度复杂的任务。

6、执行时间

  • 机器学习:训练时间较短,从几秒到几小时不等。机器学习模型因其结构简单而训练迅速。
  • 深度学习:需要较长的训练时间,特别是对于包含多隐藏层的深度神经网络。这些复杂模型可能需要数小时甚至数天来完成训练。

7、应用场景

  • 机器学习:广泛应用于分类、回归和聚类等任务,如垃圾邮件检测、客户细分等。这些任务通常涉及结构化数据和预定义规则。
  • 深度学习:擅长处理非结构化数据,如图像识别、语音识别和自然语言处理。典型的应用包括人脸识别、自动语音翻译图像说明生成

机器学习和深度学习各有优劣,具体使用哪一种技术取决于任务的需求、数据量和可用的硬件资源。

以下是一些在选择机器学习或深度学习时需要考虑的因素:

  1. 数据量:对于小数据集,机器学习模型通常表现更好;而对于大规模数据集,深度学习更能发挥其优势。
  2. 计算资源:若计算资源有限,机器学习是更经济的选择;若拥有高性能GPU,则可以考虑深度学习。
  3. 任务类型:对于规则明确的结构化数据,机器学习更为适合;对于需要识别复杂模式的非结构化数据,深度学习表现优异。
  4. 开发时间:机器学习模型开发和训练时间短,适合快速迭代的项目;深度学习模型则需要更长的训练时间。
  5. 自动化程度:如果希望减少手动干预,可以选择深度学习;否则,可以选择机器学习进行更多的手动优化。

综上所述,机器学习和深度学习在定义、数据需求、硬件依赖性、特征提取、学习方法、执行时间和应用场景等方面存在显著差异。选择合适的技术需要考虑具体的任务需求、数据量、计算资源等因素。两者的发展和应用都在不断推动人工智能科技的进步,为各行业提供智能化解决方案。

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/bicheng/44256.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

空中交通新动能!2024深圳eVTOL展动力电池展区核心内容抢先看!

空中交通新动能!2024深圳eVTOL展动力电池展区核心内容抢先看! 关键词:2024深圳eVTOL展 动力电池 高能量密度电池 高性能电池材料 作为2024深圳eVTOL展重要组成部分,2024深圳eVTOL动力电池展将于9月23-25日在深圳坪山燕子湖国际会…

基于JAVA+SpringBoot+Vue的社区普法平台

✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取项目下载方式🍅 一、项目背景介绍: 社区普法平台旨在为社…

Python程序封装成Windows服务实践

1. WinSW 工具概述 WinSW(Windows Service Wrapper)是一个轻量级的、开源的工具,用于将任何可执行文件(包括exe、jar、脚本文件等)包装成一个Windows服务。这意味着,原本设计为命令行应用或需要手动启动的…

内存条必备知识

什么是内存条? 内存条:又称为随机存取存储器(RAM),也叫主存,是与CPU直接交换数据的内部存储器。它可以随时读写(刷新时除外),而且速度很快,通常用来暂时存储…

了解劳动准备差距:人力资源专业人员的战略

劳动准备差距是一个紧迫的问题,在全球人事部门回应,谈论未开发的潜力和错过的机会。想象一下,人才和需求之间的悬崖之间有一座桥,这促使雇主思考:我们是否为员工提供了足够的设备来应对未来的考验? 这种不…

碳化硅陶瓷膜的基本性能

碳化硅陶瓷膜作为一种由碳化硅(SiC)材料制成的高温陶瓷膜,以其独特的性能在多个领域得到了广泛的应用。以下是碳化硅陶瓷膜的基本性能,详细阐述如下: 一、电绝缘性 碳化硅陶瓷膜通常具有较好的电绝缘性,这一特性在高温环境中尤为重…

牛刀小试--下三角对称矩阵压缩存储

解析博客: 矩阵存储和特殊矩阵的压缩存储_n阶对称矩阵压缩-CSDN博客 函数功能: //为N阶下三角矩阵初始化成的一维数组分配空间 void Init_triangular_matrix(int *&matrix); //返回二维下三角矩阵的值(压缩存取) int get_Value_triangular_matrix(int matrix[],int x,int …

物流数据分析成本利润计算软件,佳易王物流货运单管理系统操作教程

前言: 物流数据分析成本利润计算软件,佳易王物流货运单管理系统操作教程 以下软件操作教程以,佳易王物流单统计分析软件为例说明 软件文件下载可以点击最下方官网卡片——软件下载——试用版软件下载 一、软件操作教程 1、佳易王物流货运…

数字人+展厅互动体验方案:多元化互动方式,拓宽文化文娱新体验

数字化创新已成为推动展厅可持续发展,创造全新消费体验,满足游客多元化需求的关键力量。 “数字人数字互动展厅”可以适应年轻一代的文化传播与多媒体互动新体验趋势,打造新生代潮玩聚集地,促进文化创意传播与互动体验场景创新&a…

CC2530寄存器编程学习笔记_按键中断

目录 无中断按键 第一步 分析原理图 电路工作原理 第二步 配置寄存器 第一步 配置为通用IO口 第二步 配置为输入 第三步 输入模式选择 按键抖动 中断按键 第一步中断寄存器的配置 上升沿 下降沿 第一步 开启总中断使能 第二步 开启端口中断使能 第三步 开启端口引…

传统中小企业如何布局短视频矩阵?云微客说别踩坑

如今社会,不管是老少都在刷短视频,短视频已经成为大家受欢迎的内容形式之一了。很多企业和个人看到了短视频赛道的这个商机,纷纷投身于短视频制作中,都想为了能够在竞争激烈的市场中脱颖而出。 但是,短视频账号并不是一…

精益思维驱动未来:人工智能产品设计的新篇章

在科技日新月异的今天,人工智能(AI)已经渗透到我们生活的方方面面,从智能家居到自动驾驶,从医疗诊断到金融服务,AI的应用场景越来越广泛。然而,如何确保AI产品在设计之初就具备高效、灵活和可持…

ITIL4认证考试注意事项(附考试答题攻略)

作为一位持有ITIL4中级认证的IT服务管理专家,我深知备考ITIL4认证考试的重要性。在此分享我的复习备考经验,帮助你顺利通过考试。 1. 制定复习计划 制定详细的复习计划是备考的第一步。合理安排每天的复习时间,重点复习ITIL4的关键概念、四个…

CSS 【实用教程】(2024最新版)

CSS 简介 CSS 是层叠样式表( Cascading Style Sheets ) 的简写,用于精确控制 HTML 页面的样式,以便更好地展示图文信息或产生炫酷/友好的交互体验。 没有必要让所有浏览器都显示得一模一样的,好的浏览器有更好的显示,糟糕的浏览器…

E. Beautiful Array(cf954div3)

题意:给定一个数组,可以先对数组进行任意排序,每次操作可以选择一个ai,将它变成aik, 想让这个数组变成一个美丽数组(回文数组),求最少操作次数 分析: 先找出相同的数字…

C++Windows环境搭建(CLion)

文章目录 CLion下载安装CLion下载CLion安装新建项目新建一个文件基础设置字体设置clion中单工程多main函数设置 参考 CLion下载安装 CLion下载 打开网址:https://www.jetbrains.com/clion/download/ 点击Download进行下载。 CLion安装 双击下载好的安装包&…

华为浏览器,Chrome的平替,插件无缝连接

文章目录 背景插件书签 背景 不知道各位小伙伴有没有这样的痛点,办公电脑、家里的电脑还有手机、平板等,收藏了一个网址或者在手机上浏览了某个网页,保存起来,可是一换平台或者换个电脑,在想要浏览之前收藏的东西&…

伺服【禾川X6】

驱动器: A:脉冲 B:EtherCAT // SV-X6 FB 040 AA 一套360 N:CANopen R:PROFINET 电机: SV-X6 MA 040A-B2 KA

将windows下载的包传到linux服务器上

以一个例子说明。 要将下面的docker压缩包上传到对应的172.39.18.2ip的服务器上。 使用如下命令 scp F:\下载内容\docker-20.10.7.tgz root172.39.18.2:/root/test/ 注意是在windows的cmd命令行中。

新版FMEA培训未能达到预期效果怎么办?

在制造业的质量管理中,FMEA(Failure Mode and Effects Analysis,失效模式与影响分析)是一项至关重要的工具,它帮助企业识别和评估产品或过程中潜在的失效模式,以及这些失效模式可能导致的后果。然而&#x…